رياضيات

(تم التحويل من حقول الرياضيات)
إقليدس الرياضياتي اليوناني في القرن الثالث ق. م، كما تخيله رفائيل في لوحته المعروفة بمدرسة أثينا

الرياضيات[1] علم مواضيعه مفاهيم مجردة والاصطلاحات الرياضية تدل على الكم، والعدد يدلّ على كمية المعدود والمقدار قابل للزيادة أو النقصان وعندما نستطيع قياس المقدار نطلق عليه اسم الكم. لذلك عرف بعض العلماء الرياضيات بأنه علم القياس. تعتبر الرياضيات لغة العلوم إذ إن هذه العلوم لا تكتمل إلا عندما نحول نتائجها إلى معادلات ونحول ثوابتها إلى خطوط بيانية.

تعرف الرياضيات بأنها دراسة القياس والحساب والهندسة. هذا بالإضافة إلى المفاهيم الحديثة نسبياً ومنها البنية، الفضاء أو الفراغ، والتغير والأبعاد. وبشكل عام قد يعرفها البعض على أنها دراسة البنى المجردة باستخدام المنطق والبراهين الرياضية والتدوين الرياضي. وبشكل أكثر عمومية، قد تعرف الرياضيات أيضاً على أنها دراسة الأعداد وأنماطها.

ولقد نشأت الرياضيات بقيام الإنسان بقياس ما يشاهده من ظواهر الطبيعة بناء على فطرة وخاصية في الإنسان ألا وهي اهتمامه بقياس كل ما حوله إلى جانب احتياجاته العملية فهكذا كان هناك ضرورة لقياس قسمة المقوتة (الطعام) بين أفراد العائلة وقياس الوقت والفصول والمحاصيل الزراعية تقسيم الأراضي وغنائم الحملات الحربية والمحاسبة للتمكن من الإتجار إلى جانب علم الملاحة بالنجوم في السفر والترحال للتجارة والاستكشاف والقياسات اللازمة لتشييد الأبنية والمدن.

وهكذا فإن البنى الرياضية التي يدرسها الرياضيون غالبا ما يعود أصلها إلى العلوم الطبيعية، وخاصة علم الطبيعة، ولكن الرياضيين يقومون بتعريف ودراسة بنى أخرى لأغراض رياضية بحتة، لأن هذه البنى قد توفر تعميما لحقول أخرى من الرياضيات مثلا، أو أن تكون عاملا مساعدا في حسابات معينة، وأخيرا فإن الرياضيين قد يدرسون حقولا معينة من الرياضيات لتحمسهم لها، معتبرين أن الرياضيات هي فن وليس علما تطبيقيا.

فللرياضيات دور بارز في علوم المادّة (أي الفيزياء والكيمياء) وعلم الأحياء (البيولوجيا)، فضلاً عن دوره المتميز في العلوم الإنسانية.

التاريخ

التطور

Greek mathematician Pythagoras (c. 570 – c. 495 BC), commonly credited with discovering the Pythagorean theorem

تطلبت المراحل الأولى من التطور الثقافي الإنساني نشوء حساب الأعداد الطبيعية، الذي توصل، في مرحلة ما، إلى تطبيق العمليات الحسابية الأربع على الأعداد الطبيعية. وقد أدت متطلبات القياس (لكميات الحبوب، وأطوال الطرق) إلى ظهور تسميات وترميزات لأبسط الأعداد الكسرية، وإلى ابتكار طرائق لإجراء العمليات الحسابية على الكسور. وهكذا نشأ أقدم علوم الرياضيات، وهو علم الحساب arithmetic، ثم إن قياسات المساحات والحجوم، ومتطلبات علم الفلك في وقت لاحق، قادت إلى نشوء علم الهندسة geometry. وقد تطور هذان العلمان عند كثير من الشعوب بسرعة، كل منها باستقلال عن الآخر. وقد كان لتجمع المعلومات الحسابية والهندسية، لدى المصريين والبابليين، أهمية بالغة في تطور العلوم فيما بعد. وتجدر الإشارة إلى أنه في سياق تطوير التقنيات الحسابية من قبل البابليين، توصلوا، أثناء محاولاتهم معالجة بعض المسائل الفلكية، إلى بعض الأفكار الجبرية والمثلثاتية.[2]

الرياضيات الابتدائية

بعد تجميع قدر كبير من المعارف والتقنيات الرياضية، وخاصة ما يتعلق منها بأساليب إجراء الحسابات، وبطرق تعيين المساحات والحجوم، غدت الرياضيات علماً قائماً بذاته، وبرزت حاجة ملحة إلى تطوير مفاهيمه الأساسية تطويراً منهجياً، وإعطائه صيغة عامة قدر الإمكان. وفيما يتعلق بالحساب والجبر، فقد ظهر الاهتمام بهما بوضوح في بابل. لكن اليونان القديمة كانت أوضح في بناء علم الرياضيات على أسس منهجية تعتمد على المنطق. هذا وإن إنشاء قدماء اليونان للنظام، الذي بنوا عليه الهندسة الابتدائية، غدا القاعدة التي استند إليها النظام الاستنتاجي، الذي كان النهجَ الأساسيَّ للعلوم الرياضية أكثر من ألفي سنة. أما علم الحساب، فتطور تدريجياً إلى نظرية الأعداد. وقد تبين أن مفهوم العدد الحقيقي (الذي برز في سياق عملية قياس المقادير) يتطلب إجراءات طويلة ومعقدة. وفي الحقيقة، فإن مفهومي العدد الأصم، والعدد السالب ينتسبان إلى تجريدات رياضية أعقد، لأنه لا يوجد نموذج واضح لهما في عالمنا الفيزيائي، خلافاً لمفاهيم العدد الطبيعي، والعدد الكسري، والشكل الهندسي. أما علم الجبر، الذي يستعمل الحروف في الحسابات، فقد غدا علماً قائماً بذاته في أواخر القرن السابع عشر، وهو التاريخ الذي شهد نهاية عصر الرياضيات الابتدائية، وانتقال مركز ثقل اهتمام الرياضيات إلى موضوع القيم المتغيرة.

رياضيات القيم المتغيرة

في القرن السابع عشر، بدأ عصر جديد للرياضيات، فالعلاقات الكمية والنماذج الفضائية، التي كانت الموضوع الرئيسي للرياضيات، لم تُدْرس بالاستعانة بالأعداد، أو بالأشكال الهندسية. وقد سيطر على الفكر الرياضي آنذاك مفهوما الحركة والتغير، وتضمّن علم الجبر أفكاراً، ولو أنها مستترة، عن تبعية بعض المقادير لأخرى متغيرة (كتبعية مجموع عدة حدودٍ لقيم هذه الحدود، وغير ذلك). وبمرور الوقت، كان لا بد من تقديم مفهوم الدالة (التابع)، الذي أدى فيما بعد، نفس الدور الأساسي الذي قام به فيما سبق مفهوم المقدار أو العدد. وقد قادت دراسة المقادير المتغيرة، والعلاقات الدالية فيما بعد، إلى ظهور مفاهيم أساسية في التحليل الرياضي، أدت بدورها إلى بروز فكرة اللانهاية، وإلى بروز مفاهيم النهاية، والمشتق، وحساب التكامل. وغدت القوانين الأساسية في الميكانيك والفيزياء تصاغ باستعمال معادلات تفاضلية. وتمثل مكاملة هذه المعادلات واحداً من أهم المواضيع التي تتناولها الرياضيات.

وفي نهاية القرن السابع عشر، برز فرع مهم للعلوم الرياضية أطلق عليه اسم «حسبان التغيرات». أسس هذا الفرع الرياضيان السويسريان جاك برنولي، وجان برنولي، والعالم الشهير إسحق نيوتن، والرياضي الألماني ل. أولر L.Euler، والرياضي الشهير ج. لاگرانج J.Lagrange. كان أول موضوع تناوله «حسبان التغيرات» هو إيجاد القيم العظمى أو الصغرى للتكاملات المحددة. وكمثال على ذلك، إيجاد المنحني الذي يقع في مستو شاقولي، والذي يصل بين نقطتين غير واقعتين على مستقيم رأسي واحد، بحيث تكون المدة، التي يستغرقها الجسم للوصول من النقطة العليا إلى الدنيا، أقصر ما يمكن. (وكان الحل هو منحنيا سيكلوئيديا cycloide).

إن الموضوعات التي يتناولها علم الهندسة أخذ في التوسع أيضاً، بعد ما أُدخلت فيها أفكار تتعلق بحركة الأشكال وتحويلاتها. ففي الهندسة الإسقاطية، مثلاً، تكوّن حركة التحويلات الإسقاطية للمستوي والفضاء موضوعاً هاماً لعلم الهندسة. وتجدر الإشارة إلى أن التطور الواعي لمثل هذه الأفكار، لم يحدث إلا بحلول نهاية القرن الثامن عشر وبداية القرن التاسع عشر. وفي وقت أبكر، رافق تأسيس الهندسة التحليلية، في القرن السابع عشر، تغير جذري في العلاقة بين الهندسة وباقي الفروع الرياضية: فقد وجد أسلوب شامل لترجمة المسائل الهندسية إلى لغة الجبر والتحليل، ومن ثم حلها باستعمال طرق جبرية وتحليلية. ومن جهة أخرى، توافرت إمكانات فعالة لتمثيل الحقائق الجبرية والتحليلية هندسياً، كالتمثيل البياني للتبعيات الدالية.

النظام المسلماتي

الطريقة المسلماتية axiomatic method: يتكوّن النظام المسلماتي axiomatic system، الذي تبنى عليه النظريات theories العلمية، وخاصة الرياضية، من العناصر الآتية:

1- المفاهيم concepts،

2- التعاريف definitions،

3- المسلّمات axioms (أو البديهيات postulates).

4- الدعاوى propositions (أو المبرهنات theorems، أو القضايا statements).

5- البراهين proofs على صحة الدعاوى.

وأما المفاهيم، فهي أشياء رياضية لا يمكن تقديم تعريف لها، مثل: النقطة، والمستقيم، والمجموعة، وغيرها.

أما التعاريف، فمهمتها إيضاح المقصود من بعض المصطلحات المستعملة، مثل القطعة المستقيمة والدائرة، والدالة (التابع)، والزمرة، وغيرها.

وأما المسلّمات، فهي قضايا تقبل دون برهان، مثل مسلّمات إقليدس (الواردة في بند لاحق). لا يوجد ضرورة للتثبت من صحة المسلّمات، حتى إثارة السؤال عن صحتها، أمر لا فائدة منه، بل ولا معنى له، ذلك أنه ليس لها أي وجود، عموماً، في عالم الواقع.

الدعوى (المبرهنة) قضية رياضية مثبتة، وسيتم التطرق إليها وإلى البرهان بشيء من التفصيل في سياق البنود اللاحقة.

تكمن قوة الطريقة المسلّماتية في أنها تسمح ببناء نظرية ضخمة، انطلاقاً من عدد قليل من الافتراضات، التي لا بد أن تتحقق كل النتائج المترتبة عليها.

إن الفكرة التي مؤداها أن النظام المسلّماتي منفصل عن العالم الواقعي، تكوّنت منذ مدة ليست ببعيدة. ومع أن اليونان القدماء، الذين أبدعوا مسلّمات علم الهندسة، كانوا يظنون أنهم يعبّرون عن حقائق فيزيائية أصيلة، فإن بعضها كان له طبيعة مثالية غير واقعية، وبالطبع، كانت تعد المسلّمة حقيقة واضحة، لا تتطلب إثباتاً. وجدير بالذكر أن المعجمات الحالية تعرّفها بهذه الطريقة. لكن هذه الكلمة أخذت في الرياضيات معنى مختلفاً تماماً، وكل من درس نظرية الزمر، مثلاً، يلاحظ أن المسلّمات التي بنيت عليها هذه النظرية ليست واضحة مطلقاً.

مسلّمات إقليدس: كان إقليدس هو الذي وضع مسلّمات الهندسة، التي تسمى باسمه. أهم هذه المسلّمات هي:

1- يمكن رسم مستقيم يمر بأي نقطتين،

2- لكل مستقيمين نقطة مشتركة واحدة على الأكثر،

3- يمكن تمديد كل قطعة مستقيمة محدودة بلا قيود،

4- حول أي نقطة، يمكن رسم دائرة طول نصف قطرها اختياري،

5- كل الزوايا القائمة متساوية،

6- لكل مستقيم، ولكل نقطة غير واقعة عليه، يوجد مستقيم يوازي المستقيم الأول ويمر بالنقطة المعطاة، وهذا المستقيم وحيد.

(هذه الصيغ ليست متطابقة تماماً مع تلك التي نص عليها إقليدس!)

وفي أثناء مدة طويلة، كان يُظَنُّ أن المسلّمة (6) ليست مسلّمة بحق، ذلك أنها غير واضحة إطلاقاً، في الوقت الذي كان يعتقد فيه أن معيار قبول المسلّمة هو وضوحها. وقد أُجريَ عدد كبير من المحاولات لإثبات صحتها استناداً إلى المسلّمات الأخرى، لكن كل هذه المحاولات منيت بالإخفاق.

وقد تبين في وقت لاحق أن إثبات المسلّمة (6) أمر مستحيل. لكن إليكم السؤال المهم الآتي: «هل هذه المسلّمة حقيقية في العالم الواقعي؟» هذا السؤال يخرج عن إطار الرياضيات. فلكي يُجاب عنه، لا بد من القيام بتجربة، لنتصور، مع ذلك، أن هذه التجربة نفذها اليونان القدماء، فقاموا برسم مستقيمين «متوازيين»، وليكونا، مثلاً، خطي طول، أحدهما يمر بروما والآخر بأثينا. عندئذٍ سيستنتجون أن هذين الخطين يتلاقيان في القطب الشمالي، ومن ثم كان بإمكانهم الحكم على مسلّمة التوازي بأنها غير صحيحة. لكن الحقيقة هي أن في الأمر خدعة، ذلك أننا نعرف أن الكرة الأرضية كروية، وهندسة إقليدس تصح في المستوي وليس على الكرة.

كان من الممكن إجراء تجربة أدق باستعمال أشعة الليزر، أو أي وسيلة ملائمة أخرى. فبتوجيه أشعة ليزرية إلى الفضاء بين النجميّ، وجعْلها متوازية قدر المستطاع، يمكن معرفة ما إذا كانت هذه الأشعة تتقاطع. لكن مثل هذه التجربة لا يمكن تنفيذها بإمكاناتنا الحالية.

الانسجام (الاتساق)

جاء في البند الأول أن عالم الرياضيات ج. هويل ذكر ضرورة اتسام الفرضيات التي يُبنى عليها أي نظام رياضي بالانسجام (الاتّساق). وفي هذا البند، سنورد شرحاً أكثر تحديداً ودقة لما يعنيه هذا المصطلح.

عند الشروع في صوغ نظرية مسلّماتية، فلا يوجد تحت تصرفك سوى مسلّمات. عندئذٍ تستند إلى هذه المسلّمات لإثبات مبرهنة ما، ثم تطبق هذه المبرهنات لإثبات مبرهنة أخرى. وهكذا تغدو المسلّمات مصدراً لعدد كبير من المبرهنات، كل منها يبنى في نهاية الأمر على تلك المسلّمات.

كل شيء يسير حتى الآن سيراً حسناً، ما لم تجد في طريقك مبرهنتين تناقض إحداهما الأخرى. أما إذا أمكن في نظرية إثبات وجود تناقض بين مبرهنتين، فإن النظرية كلها تكون غير سليمة، وعندئذٍ يمكن أن تثبت فيها أي شيء.

وعندما قام ذات يوم الرياضي المشهور ج. هاردي G.Hardy بتقديم هذه الملاحظة عند تناوله طعام الغداء مع بعض زملائه، أصرّ أحد الحاضرين على هاردي إثبات أنه «إذا كان 2+2= 5، فإن أحد الحاضرين، واسمه ماك ـ تاكرت، هو البابا». عندئذٍ فكر هاردي قليلاً وأجاب السائل بالعبارات الآتية: «نحن نعلم أن 2+2=4، إذن 5=4. وبطرح 3 من طرفي هذه المساواة نجد 2=1. ماك ـ تاكرت والبابا رجلان، إذن ماك تاكرت والبابا رجل واحد».

إن نظام المسلّمات، الذي لا يمكن أن يُستنتجَ منه دعاوى متناقضة، يسمى نظاماً منسجماً (أو متسقاً). والانسجام هو أهم خاصة من خواص أي نظام مسلّماتي. وقد كان أول من لفت الانتباه إلى أهميته الرياضي الألماني الشهير د. هلبرت D.Hilbert، مؤسس المسلّماتية الشكلية formal axiomatics الحديثة. وقد وجد هلبرت أن إجراء تغييرات طفيفة جداً في نظام منسجم قد تحوله إلى نظام غير منسجم، وأن عدم الانسجام في النظام الجديد لا يمكن كشفه إذا لم يُعرف سلفاً أين يجب أن يبرز عدم الانسجام.

التمام والاستقلال completeness and independence: صاغ هلبرت أيضاً خاصتين أُخْرَيَيْن هامتين للنظم المسلّماتية وهما: التمام والاستقلال. وقد جرى التطرق في البند الأول إلى خاصة التمام التي تحدث عنها، دون أن يذكرها صراحة، الرياضيان داربو وهويل. أما في هذا البند، فستُعرض هذه الفكرة بصيغة أكثر تحديداً ودقة. وبغية إيضاح ما يعنيه التمام، لا بد من إيراد معنى البرهان proof في النظام المسلّماتي. فإذا كانت (و) دعوى معينة في هذا النظام، فإن برهانها هو سلسلة منتهية finitie من الدعاوى، كل منها هو مسلّمة أو نتيجة منطقية لبعض الدعاوى السابقة في هذه السلسلة، بحيث تكون (و) آخر دعوى في هذه السلسلة. ويكون النظام تاماً إذا وجد لكل دعوى (و) إما برهان عليها، وإما برهان على نفيها(~ و). وبعبارة أخرى، يجب أن يوجد في جعبتنا عدد من المسلّمات يكفي للبرهان على صحة أو خطأ أي دعوى ممكنة في ذلك النظام.

وفي نظام تام لا يمكن بأي حال من الأحوال إضافة مسلّمة أخرى، فأي مسلّمة أخرى، إما أن تكون نتيجة للمسلّمات الموجودة (أي زائدة وغير ضرورية)، وإما أن تؤدي إضافتها إلى النظام جعلَه متناقضاً (أي أنه يصبح بلا معنى).

تسمى مجموعةٌ من المسلّمات مستقلة، إذا لم يكن بالإمكان استنتاج أي منها من المسلّمات الأخرى.

إن إثبات تمام نظام (إذا كان تاماً فعلاً) ليس بالأمر السهل غالباً. بيد أن ثمة طرائق بسيطة تسمح بإثبات استقلال نظام (في ظروف ملائمة)، بل وإثبات انسجامه أحياناً. وهذه الطرائق تتعلق بمفهوم ما يسمى بنموذج model النظام المسلّماتي، لكننا لن نتوقف عند هذا الموضوع.

تعريفات الرياضيات

الرياضيات هي العلم الذي يدرس العلاقات بين بعض الأشياء المجردة ضمن شرط وحيد، وهو ألاّ يؤدي تعريف هذه الأشياء إلى تناقضات.

وقد عُرّفَتِ الرياضيات مدة طويلة بأنها علم الكميات، التي تقسمها الرياضيات إلى عدة فروع تبعاً لطبيعة هذه الكميات. ويُمَيَّزُ من هذه الفروع، في المقام الأول، الحساب، والهندسة، والميكانيك، والرياضيات الفيزيائية، وحساب الاحتمالات. ويوجد بين هذه الفروع المختلفة رابطة مشتركة، هي الجبر.

لا بد من الإقرار بأن المصطلحات المستعملة في الرياضيات لم تكن دقيقة دوماً، ثم إنها عرضة للتغيرات مع الزمن. فالتعريف التقليدي، الذي قدمه للرياضيات عام 1691 الرياضي الفرنسي ج. أوزانام (1640ـ1718) J.Ozanam، الذي ينص على أن «الرياضيات هي العلم الذي يدرس كل ما يمكن قياسه أو حسابه»، يعد ضمناً أن النواة المركزية للعلوم الرياضية هي الهندسة والجبر. وكأن هذا التعريف يشير إلى أن جذور الرياضيات موجودة في كتاب «الأصول» Elements الذي كتبه إقليدس (330 ـ 270 ق.م.)، والذي يعالج بالضبط هذين الموضوعين الأساسيين.

بحلول القرن الثامن عشر، قُسّمت الرياضيات إلى رياضياتٍ بحتةٍ pure mathematics، لا تتطلب سوى التفكير والمحاكمة، ورياضياتٍ مختلطة mixed mathematics، يصفها أوزانام بأنها «تلك الرياضيات التي تدرس خواص الكميات المرتبطة بموضوعات حساسة، والتي لا تستغني عن التجربة». وهذه الرياضيات المختلطة مرتبطة، في معظمها، بالعلوم الرياضية ـ الفيزيائية. وقد قسم بعض الرياضيين في ذلك الوقت الرياضيات إلى نظرية theoretical، وعملية practical، وَوُصفَتِ الأخيرةُ بأنها فنّ إجراء الحسابات، أو فنّ قياس المساحات.

بحلول عام 1800 تقريباً، صار الرياضيون يفضّلون استعمال مصطلح الرياضيات التطبيقية على مصطلح الرياضيات المختلطة. ومع ذلك، ظل التمييز بين الرياضيات البحتة والتطبيقية يفتقر إلى الدقة. فالهندسة، التي طالما اعتُبرت علماً للفضاء الفيزيائي، والتي كانت في البداية أساساً للرياضيات البحتة، صارت فيما بعد تطبيقاً لها. وبالعكس، فحساب الاحتمالات، الذي صُنِّف في الماضي ضمن الرياضيات التطبيقية، أصبح اليوم منتسباً إلى الرياضيات البحتة، بفضل وضع مسلَّمات axioms له من قبل الرياضي الروسي أ. كولموگوروڤ A.Kolmogorov عام 1933. أما علم الإحصاء، فبقي في المجال التطبيقي.

وبحلول القرن التاسع عشر، تعرض التعريف التقليدي للرياضيات لهزة عنيفة قبل أن يختفي تماماً. ففي عام 1854، صرّح الرياضي والمنطقي الإنكليزي ج. بول (1815ـ1864) G.Boole بأن الأفكار المتعلقة بالعدد والكميات لا تستغرق علم الرياضيات كله، إذ يجب إدخال المنطق logic ضمن هذا العلم، وهذه فكرة قبلها الرياضيون حتى أيامنا هذه.

وفي عام 1874 شدد گ. داربو (1842ـ1917) G.Darboux على إحدى الضرورات التي يجب أن يحققها النظام الرياضي بقوله: «يجب التقيد بقانون مضاعف، وهو التعريف الدقيق للفرضيات التي يُبنَى عليها النظام، وعدم تقديم ما هو غير ضروري منها، وذلك لبلوغ الدّقة النظرية التي يراد التوصل إليها.» وقد كتب صديقه ج. هويل (1823ـ1886) J.Hoüel عام 1878، في مقدمة كتابه الذي يبحث في حساب اللامتناهيات في الصغر، ما يأتي: «لا بد للعلم المجرد أولاً أن تكون الفرضيات الأولية الموضوعة له منسجمة (متّسقة) (compatible) consistent، وأن تكون غير قابلة للاختزال إلى قسم أصغر منها. كل علم مؤسس على فرضيات تفي بهذين الشرطين، هو علم سليم تماماً من وجهتي النظر العقلية والتجريدية».


التدوين الرمزي والمصطلحات

An explanation of the sigma (Σ) summation notation

Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations, unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas.[3] More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts. Operation and relations are generally represented by specific symbols or glyphs,[4] such as + (plus), × (multiplication), (integral), = (equal), and < (less than).[5] All these symbols are generally grouped according to specific rules to form expressions and formulas.[6] Normally, expressions and formulas do not appear alone, but are included in sentences of the current language, where expressions play the role of noun phrases and formulas play the role of clauses.

Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is a mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture. Through a series of rigorous arguments employing deductive reasoning, a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma. A proven instance that forms part of a more general finding is termed a corollary.[7]

Numerous technical terms used in mathematics are neologisms, such as polynomial and homeomorphism.[8] Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, "or" means "one, the other or both", while, in common language, it is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called "exclusive or"). Finally, many mathematical terms are common words that are used with a completely different meaning.[9] This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module is flat" and "a field is always a ring".

العلاقة مع العلوم

Mathematics is used in most sciences for modeling phenomena, which then allows predictions to be made from experimental laws.[10] The independence of mathematical truth from any experimentation implies that the accuracy of such predictions depends only on the adequacy of the model.[11] Inaccurate predictions, rather than being caused by invalid mathematical concepts, imply the need to change the mathematical model used.[12] For example, the perihelion precession of Mercury could only be explained after the emergence of Einstein's general relativity, which replaced Newton's law of gravitation as a better mathematical model.[13]

There is still a philosophical debate whether mathematics is a science. However, in practice, mathematicians are typically grouped with scientists, and mathematics shares much in common with the physical sciences. Like them, it is falsifiable, which means in mathematics that, if a result or a theory is wrong, this can be proved by providing a counterexample. Similarly as in science, theories and results (theorems) are often obtained from experimentation.[14] In mathematics, the experimentation may consist of computation on selected examples or of the study of figures or other representations of mathematical objects (often mind representations without physical support). For example, when asked how he came about his theorems, Gauss once replied "durch planmässiges Tattonieren" (through systematic experimentation).[15] However, some authors emphasize that mathematics differs from the modern notion of science by not relying on empirical evidence.[16][17][18][19]

الرياضيات البحتة والتطبيقية

إسحاق نيوتن
گوتفريد لايبنتز
إسحاق نيوتن (يسار) وگوتفريد لايبنتز (يمين) مطورو التفاضل والتكمل.

Until the 19th century, the development of mathematics in the West was mainly motivated by the needs of technology and science, and there was no clear distinction between pure and applied mathematics.[20] For example, the natural numbers and arithmetic were introduced for the need of counting, and geometry was motivated by surveying, architecture and astronomy. Later, Isaac Newton introduced infinitesimal calculus for explaining the movement of the planets with his law of gravitation. Moreover, most mathematicians were also scientists, and many scientists were also mathematicians.[21] However, a notable exception occurred with the tradition of pure mathematics in Ancient Greece.[22] The problem of integer factorization, for example, which goes back to Euclid in 300 BC, had no practical application before its use in the RSA cryptosystem, now widely used for the security of computer networks.[23]

In the 19th century, mathematicians such as Karl Weierstrass and Richard Dedekind increasingly focused their research on internal problems, that is, pure mathematics.[20][24] This led to split mathematics into pure mathematics and applied mathematics, the latter being often considered as having a lower value among mathematical purists. However, the lines between the two are frequently blurred.[25]

The aftermath of World War II led to a surge in the development of applied mathematics in the US and elsewhere.[26][27] Many of the theories developed for applications were found interesting from the point of view of pure mathematics, and many results of pure mathematics were shown to have applications outside mathematics; in turn, the study of these applications may give new insights on the "pure theory".[28][29]

An example of the first case is the theory of distributions, introduced by Laurent Schwartz for validating computations done in quantum mechanics, which became immediately an important tool of (pure) mathematical analysis.[30] An example of the second case is the decidability of the first-order theory of the real numbers, a problem of pure mathematics that was proved true by Alfred Tarski, with an algorithm that is impossible to implement because of a computational complexity that is much too high.[31] For getting an algorithm that can be implemented and can solve systems of polynomial equations and inequalities, George Collins introduced the cylindrical algebraic decomposition that became a fundamental tool in real algebraic geometry.[32]

In the present day, the distinction between pure and applied mathematics is more a question of personal research aim of mathematicians than a division of mathematics into broad areas.[33][34] The Mathematics Subject Classification has a section for "general applied mathematics" but does not mention "pure mathematics".[35] However, these terms are still used in names of some university departments, such as at the Faculty of Mathematics at the University of Cambridge.

Unreasonable effectiveness

The unreasonable effectiveness of mathematics is a phenomenon that was named and first made explicit by physicist Eugene Wigner.[36] It is the fact that many mathematical theories (even the "purest") have applications outside their initial object. These applications may be completely outside their initial area of mathematics, and may concern physical phenomena that were completely unknown when the mathematical theory was introduced.[37] Examples of unexpected applications of mathematical theories can be found in many areas of mathematics.

A notable example is the prime factorization of natural numbers that was discovered more than 2,000 years before its common use for secure internet communications through the RSA cryptosystem.[38] A second historical example is the theory of ellipses. They were studied by the ancient Greek mathematicians as conic sections (that is, intersections of cones with planes). It was almost 2,000 years later that Johannes Kepler discovered that the trajectories of the planets are ellipses.[39]

In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the theory of relativity that uses fundamentally these concepts. In particular, spacetime of special relativity is a non-Euclidean space of dimension four, and spacetime of general relativity is a (curved) manifold of dimension four.[40][41]

A striking aspect of the interaction between mathematics and physics is when mathematics drives research in physics. This is illustrated by the discoveries of the positron and the baryon In both cases, the equations of the theories had unexplained solutions, which led to conjecture of the existence of an unknown particle, and the search for these particles. In both cases, these particles were discovered a few years later by specific experiments.[42][43][44]

Specific sciences

Physics

Diagram of a pendulum

Mathematics and physics have influenced each other over their modern history. Modern physics uses mathematics abundantly,[45] and is also considered to be the motivation of major mathematical developments.[46]

Computing

Computing is closely related to mathematics in several ways.[47] Theoretical computer science is considered to be mathematical in nature.[48] Communication technologies apply branches of mathematics that may be very old (e.g., arithmetic), especially with respect to transmission security, in cryptography and coding theory. Discrete mathematics is useful in many areas of computer science, such as complexity theory, information theory, and graph theory.[49] In 1998, the Kepler conjecture on sphere packing seemed to also be partially proven by computer.[50]

Biology and chemistry

The skin of this giant pufferfish exhibits a Turing pattern, which can be modeled by reaction–diffusion systems.

Biology uses probability extensively in fields such as ecology or neurobiology.[51] Most discussion of probability centers on the concept of evolutionary fitness.[51] Ecology heavily uses modeling to simulate population dynamics,[51][52] study ecosystems such as the predator-prey model, measure pollution diffusion,[53] or to assess climate change.[54] The dynamics of a population can be modeled by coupled differential equations, such as the Lotka–Volterra equations.[55]

Statistical hypothesis testing, is run on data from clinical trials to determine whether a new treatment works.[56] Since the start of the 20th century, chemistry has used computing to model molecules in three dimensions.[57]

Earth sciences

Structural geology and climatology use probabilistic models to predict the risk of natural catastrophes.[58] Similarly, meteorology, oceanography, and planetology also use mathematics due to their heavy use of models.[59][60][61]

Social sciences

Areas of mathematics used in the social sciences include probability/statistics and differential equations. These are used in linguistics, economics, sociology,[62] and psychology.[63]

Supply and demand curves, like this one, are a staple of mathematical economics.

Often the fundamental postulate of mathematical economics is that of the rational individual actor – Homo economicus (حرفياً 'economic man').[64] In this model, the individual seeks to maximize their self-interest,[64] and always makes optimal choices using perfect information.[65] This atomistic view of economics allows it to relatively easily mathematize its thinking, because individual calculations are transposed into mathematical calculations. Such mathematical modeling allows one to probe economic mechanisms. Some reject or criticise the concept of Homo economicus. Economists note that real people have limited information, make poor choices and care about fairness, altruism, not just personal gain.[66]

Without mathematical modeling, it is hard to go beyond statistical observations or untestable speculation. Mathematical modeling allows economists to create structured frameworks to test hypotheses and analyze complex interactions. Models provide clarity and precision, enabling the translation of theoretical concepts into quantifiable predictions that can be tested against real-world data.[67]

At the start of the 20th century, there was a development to express historical movements in formulas. In 1922, Nikolai Kondratiev discerned the ~50-year-long Kondratiev cycle, which explains phases of economic growth or crisis.[68] Towards the end of the 19th century, mathematicians extended their analysis into geopolitics.[69] Peter Turchin developed cliodynamics since the 1990s.[70]

Mathematization of the social sciences is not without risk. In the controversial book Fashionable Nonsense (1997), Sokal and Bricmont denounced the unfounded or abusive use of scientific terminology, particularly from mathematics or physics, in the social sciences.[71] The study of complex systems (evolution of unemployment, business capital, demographic evolution of a population, etc.) uses mathematical knowledge. However, the choice of counting criteria, particularly for unemployment, or of models, can be subject to controversy.[72][73]

الفلسفة

الواقع

Leonhard Euler, who created and popularized much of the mathematical notation used today

The connection between mathematics and material reality has led to philosophical debates since at least the time of Pythagoras. The ancient philosopher Plato argued that abstractions that reflect material reality have themselves a reality that exists outside space and time. As a result, the philosophical view that mathematical objects somehow exist on their own in abstraction is often referred to as Platonism. Independently of their possible philosophical opinions, modern mathematicians may be generally considered as Platonists, since they think of and talk of their objects of study as real objects.[74]

Armand Borel summarized this view of mathematics reality as follows, and provided quotations of G. H. Hardy, Charles Hermite, Henri Poincaré and Albert Einstein that support his views.[42]

Something becomes objective (as opposed to "subjective") as soon as we are convinced that it exists in the minds of others in the same form as it does in ours and that we can think about it and discuss it together.[75] Because the language of mathematics is so precise, it is ideally suited to defining concepts for which such a consensus exists. In my opinion, that is sufficient to provide us with a feeling of an objective existence, of a reality of mathematics ...

Nevertheless, Platonism and the concurrent views on abstraction do not explain the unreasonable effectiveness of mathematics.[76]

Proposed definitions

There is no general consensus about the definition of mathematics or its epistemological status—that is, its place inside knowledge. A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do".[77][78] A common approach is to define mathematics by its object of study.[79][80][81][82]

Aristotle defined mathematics as "the science of quantity" and this definition prevailed until the 18th century. However, Aristotle also noted a focus on quantity alone may not distinguish mathematics from sciences like physics; in his view, abstraction and studying quantity as a property "separable in thought" from real instances set mathematics apart.[83] In the 19th century, when mathematicians began to address topics — such as infinite sets — which have no clear-cut relation to physical reality, a variety of new definitions were given.[84] With the large number of new areas of mathematics that have appeared since the beginning of the 20th century, defining mathematics by its object of study has become increasingly difficult.[85] For example, in lieu of a definition, Saunders Mac Lane in Mathematics, form and function summarizes the basics of several areas of mathematics, emphasizing their inter-connectedness, and observes:[86]

the development of Mathematics provides a tightly connected network of formal rules, concepts, and systems. Nodes of this network are closely bound to procedures useful in human activities and to questions arising in science. The transition from activities to the formal Mathematical systems is guided by a variety of general insights and ideas.

Another approach for defining mathematics is to use its methods. For example, an area of study is often qualified as mathematics as soon as one can prove theorems—assertions whose validity relies on a proof, that is, a purely-logical deduction.[أ][87]قالب:Verification failed

Rigor

Mathematical reasoning requires rigor. This means that the definitions must be absolutely unambiguous and the proofs must be reducible to a succession of applications of inference rules,[ب] without any use of empirical evidence and intuition.[ت][88] Rigorous reasoning is not specific to mathematics, but, in mathematics, the standard of rigor is much higher than elsewhere. Despite mathematics' concision, rigorous proofs can require hundreds of pages to express, such as the 255-page Feit–Thompson theorem.[ث] The emergence of computer-assisted proofs has allowed proof lengths to further expand.[ج][89] The result of this trend is a philosophy of the quasi-empiricist proof that can not be considered infallible, but has a probability attached to it.[90]

The concept of rigor in mathematics dates back to ancient Greece, where their society encouraged logical, deductive reasoning. However, this rigorous approach would tend to discourage exploration of new approaches, such as irrational numbers and concepts of infinity. The method of demonstrating rigorous proof was enhanced in the sixteenth century through the use of symbolic notation. In the 18th century, social transition led to mathematicians earning their keep through teaching, which led to more careful thinking about the underlying concepts of mathematics. This produced more rigorous approaches, while transitioning from geometric methods to algebraic and then arithmetic proofs.[90]

At the end of the 19th century, it appeared that the definitions of the basic concepts of mathematics were not accurate enough for avoiding paradoxes (non-Euclidean geometries and Weierstrass function) and contradictions (Russell's paradox). This was solved by the inclusion of axioms with the apodictic inference rules of mathematical theories; the re-introduction of axiomatic method pioneered by the ancient Greeks.[90] It results that "rigor" is no more a relevant concept in mathematics, as a proof is either correct or erroneous, and a "rigorous proof" is simply a pleonasm. Where a special concept of rigor comes into play is in the socialized aspects of a proof, wherein it may be demonstrably refuted by other mathematicians. After a proof has been accepted for many years or even decades, it can then be considered as reliable.[91]

Nevertheless, the concept of "rigor" may remain useful for teaching to beginners what is a mathematical proof.[92]

فروع الرياضيات

An abacus, a simple calculating tool used since ancient times

الأسس والفلسفة

Venn A intersect B.svg Commutative diagram for morphism.svg DFAexample.svg
Mathematical logic Set theory Category theory Theory of computation

الرياضيات البحتة

قد تقسم الرياضيات إلى فروع حسب موضوع الدراسة الأساسي.

الكمية

أعداد طبيعية أعداد صحيحة أعداد كسرية
أعداد حقيقية أعداد مركبة أو عقدية
عددعدد طبيعيعدد صحيحعدد كسريعدد حقيقيعدد عقديعدد فوق عقديكواتيرنيوناوكتونيونسيدينيونعدد فوق حقيقيعدد حقيقي فائقعدد ترتيبيعدد كميعدد بيمتوالية صحيحةثابت رياضيأسماء الأعداداللانهايةالأساس (رياضيات)

البنية

انظر إلى بنية رياضية.

جبر تجريدينظرية الأعدادهندسة جبريةنظرية المجموعاتمونويدالتحليل الرياضيالطوبولوجياالجبر الخطينظرية المخططاتالجبر الشاملنظرية الزمرنظرية الترتيبنظرية القياس

Elliptic curve simple.svg Rubik's cube.svg Group diagdram D6.svg Lattice of the divisibility of 60.svg
توافقيات نظرية الأعداد نظرية الزمر نظرية المخططات نظرية الترتيب

الفضاء

قد يسمى الفضاء أيضا فراغا.

Torus.jpg
Pythagorean.svg
طوبولوجيا هندسة رياضية
Osculating circle.svg
thump
هندسة تفاضلية علم المثلثات
Fraktal.jpg
هندسة كسيرية
طوبولوجياهندسة رياضيةعلم المثلثاتهندسة جبريةهندسة تفاضليةطبولوجيا تفاضليةطوبولوجيا جبريةجبر خطيهندسة كسيرية

التغير

Integral as region under curve.png
حساب تكامل
Vectorfield jaredwf.png
تكامل شعاعي
تحليل رياضي معادلات تفاضلية
Limitcycle.svg
LorenzAttractor.png
جمل متحركة (ديناميكية) نظرية الشواش

الحسابعلم الحسبانالحسبان الشعاعيالتحليل الرياضيمعادلات تفاضليةجمل متحركةنظرية الشواشقائمة الدوال (التوابع)


الرياضيات التطبيقية

تدرس الرياضيات التطبيقية الطرق والوسائل الرياضية التي تستعمل في مجالات أخرى كالهندسة والعلوم والأعمال والصناعة. ترتبط الرياضيات التطبيقية ارتباطا كبيرا بالرياضيات البحتة.

قد تضم الرياضيات التطبيقية مجالات الميكانيك والتحليل العددي والاستمثال الرياضي والرياضيات الاقتصادية ونظرية الألعاب والبيولوجيا الرياضية وعلم التعمية ونظرية المعلومات وميكانيك السوائل.

الإحصاء وعلوم أخرى مساعدة على اتخاد القرارات

للرياضيات التطبيقية تداخل مع تخصص الإحصاء حيث تعتمد نظريته على الرياضيات وخصوصا نظرية الاحتمال.

الرياضيات الحسابية

تدرس الرياضيات الحسابية طرق حلحلة المعضلات الرياضية التي تتطلب قدرات حسابية تفوق القدرة الإنساية. التحليل العددي يأتي في هذا الاتجاه.


الإحصاء وعلوم أخرى مساعدة على اتخاد القرارات

للرياضيات التطبيقية تداخل مع تخصص الإحصاء حيث تعتمد نظريته على الرياضيات وخصوصا نظرية الاحتمال.

الرياضيات الحسابية

تدرس الرياضيات الحسابية طرق حلحلة المعضلات الرياضية التي تتطلب قدرات حسابية تفوق القدرة الإنساية. التحليل العددي يأتي في هذا الاتجاه.

Gravitation space source.png BernoullisLawDerivationDiagram.svg Composite trapezoidal rule illustration small.svg Maximum boxed.png Two red dice 01.svg Oldfaithful3.png Caesar3.svg
Mathematical physics Fluid dynamics Numerical analysis Optimization Probability theory Statistics Cryptography
Market Data Index NYA on 20050726 202628 UTC.png Arbitrary-gametree-solved.svg Signal transduction pathways.svg CH4-structure.svg GDP PPP Per Capita IMF 2008.svg Simple feedback control loop2.svg
Mathematical finance Game theory Mathematical biology Mathematical chemistry Mathematical economics Control theory

تقسيم أولى لفروع الرياضيات

من الرياضيات البحتة

  • من فروع الرياضيات المتقطعة:
  • اللغات الشكلية ونظرية الآليات
  • نظرية المخططات وهي دراسة نظم ذات بنية شبكية وتتضمن على دراسة الشبكات وعبور المخططات والشجر وأطياف المخططات وغير ذلك.
  • نظرية المجموعات المبسطة.
  • نظرية الأعداد.
  • من فروع الجبر:
  • جبر الأعداد الحقيقية (الجبر والمقابلة للخوارزمي).
  • الجبر المجرد (يشتمل على القواعد المنطقية لحساب مختلف مجموعات الأعداد مثل حساب الأعداد الحقيقية والمركبة إلخ)
  • نظرية الزمر.
  • حساب المجموعات (الفئات).
  • حساب المتتاليات.
  • حساب المتجهات.
  • الجبر الخطي.
  • حساب المصفوفات.
  • جبر بول
  • ما وراء الرياضيات : ويشتمل ذلك على سبيل المثال على نظرية جودل وبحوث هيلبرت وبرتراند راسل حول تعريف وتبويب بنية الرياضات بأجمعها.

من الرياضيات التطبيقية

  • نظرية الألعاب ولها تطبيقات في الاقتصاد وعلوم الإدارة والتخطيط.
  • علم الاحتمالات والإحصائيات.
  • علم النظم
  • نظرية الشواش والنظم اللا- خطية.
  • نظرية التحكم الآلي.
  • علوم الحاسبات الآلية:
    • نظرية الحوسبة.
    • تحليل الخوارزميات.
    • الذكاء الاصطناعي.
      • التعلم الآلى ويشتمل على
        • نظريات التعلم التوأصلي والشبكات العصبية أو العصبونية.
        • نظريات التعلم التطورى: البرمجة والخوارزميات الوراثية والتطورية.
      • الإثبات الآلى للنظريات.
      • البحث المتوالى والمتوازي وفوز المباريات.
    • تصميم الدارات المنطقية.
    • علم المعلومات أو العلوم المعلوماتية.
    • علم إدارة نظم المعلومات.
    • علوم البرمجيات.
  • الاستمثال استمثال تعرف فروع هذا القسم بالبرمجة للإشارة إلى أن المراد هي إيجاد أدنى حلول للمعادلات تحت التحليل مثلا تحليل سيمبلكس.
    • البرمجة الخطية.
    • البرمجة الكاملة.
    • البرمجة المتحركة.
  • بحوث العمليات.
  • علوم الطبيعة الرياضياتية : وتشمل على فروع العلوم والنظريات الطبيعية التي تعتمد بالأساس في صياغتها على التحليل والبرهنة الرياضية أكثر من قياس التجارب والظواهر الطبيعية ومنها
    • نظرية الكم أو النظرية الكمومية أو علم الحركيات الكمية.
    • الميكانيكا أو الحركيات الإحصائية.
    • ومنها أيضا دراسة حلول الدالات المجهولة في التصميم الهندسي والصناعي والتي تعتمد على حساب المعادلات التفاضلية التي تصف النظم تحت التصميم.
    • ميكانيكا هاملتون.
    • التحليل العددي.
  • علم الشفرات.

الرياضيات المتقطعة

Venn A intersect B.svg
نظرية المجموعات المبسطة نظرية الحوسبة
Caesar3.svg 6n-graf.svg
علم التعمية نظرية المخططات
التوافقياتنظرية المجموعات المبسطةنظرية الحوسبةعلم التعمية

المبرهنات والحدسيات الهامة

مبرهنة فيثاغورثمبرهنة طاليسمبرهنة الكاشيمبرهنة فيرما الأخيرةحدسية غولدباخحدسية التوأمين الأوليةمبرهنة عدم الاكتمال لغودلحدسية بوانكاريهقطر كانتورمبرهنة الألوان الأربعةقضية زورن المساعدةهوية اويلرأطروحة تشرش-تورينگ
فرضية ريمانفرضية الاستمراريةP=NPمبرهنة الحد المركزيةالمبرهنة الأساسية في التكاملالمبرهنة الأساسية في الجبرالمبرهنة الأساسية في الحسابالمبرهنة الأساسية في الهندسة الإسقاطيةمبرهنات تصنيف السطوحمبرهنة گاوس-پونيت


جوائز الرياضيات

المفاهيم الخاطئة الشائعة

الرياضيات كعلم

كارل فريدريش گاوس، الشهير بأمير علماء الرياضيات.[93]

انظر أيضا تعريف الرياضيات.
وصف كارل فريدريش گاوس الرياضيات بأنها ملكة العلوم.

يعتقد عدد من الفلاسفة أنه من غير الممكن تخطيىء الرياضيات تجريبيا، وبالتالي، فهي ليست بعلم إذا ما نُظر إلى تعريف كارل بوبر للعلم[94]. ولكن في ثلاثينات القرن العشرين، جاءت مبرهنات عدم الاكتمال لغودل لكي تقنع العديد من علماء الرياضيات بأنه لا يمكن اختزال الرياضيات في المنطق وحده. مما دفع بكارل بوبر إلى الاستنتاج أن أعظم النظريات الرياضية هي، كما هو الحال في الفيزياء والبيولوجيا، فرضية ثم استنتاج استنباطي.

مشاهير الرياضيات

من أهم مطورى الرياضيات القديمة والحديثة:


انظر أيضاً

هوامش

  1. ^ باليونانية μαθηματικός وترجمها كل من ابن رشد وأُسطات إلى كلمتي التعاليمية والتعليمية
  2. ^ خضر الأحمد. "الرياضيات (تطور ـ)". الموسوعة العربية. Retrieved 2014-07-15.
  3. ^ Wolfram, Stephan (October 2000). "Mathematical Notation: Past and Future" in MathML and Math on the Web: MathML International Conference 2000, Urbana Champaign, USA.. 
  4. ^ Douglas, Heather; Headley, Marcia Gail; Hadden, Stephanie; LeFevre, Jo-Anne (December 3, 2020). "Knowledge of Mathematical Symbols Goes Beyond Numbers". Journal of Numerical Cognition. 6 (3): 322–354. doi:10.5964/jnc.v6i3.293. eISSN 2363-8761. S2CID 228085700.
  5. ^ Letourneau, Mary; Wright Sharp, Jennifer (October 2017). "AMS Style Guide" (PDF). American Mathematical Society. p. 75. Archived (PDF) from the original on December 8, 2022. Retrieved February 3, 2024.
  6. ^ Jansen, Anthony R.; Marriott, Kim; Yelland, Greg W. (2000). "Constituent Structure in Mathematical Expressions" (PDF). Proceedings of the Annual Meeting of the Cognitive Science Society. University of California Merced. 22. eISSN 1069-7977. OCLC 68713073. Archived (PDF) from the original on November 16, 2022. Retrieved February 3, 2024.
  7. ^ Rossi, Richard J. (2006). Theorems, Corollaries, Lemmas, and Methods of Proof. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. John Wiley & Sons. pp. 1–14, 47–48. ISBN 978-0-470-04295-3. LCCN 2006041609. OCLC 64085024.
  8. ^ "Earliest Uses of Some Words of Mathematics". MacTutor. Scotland, UK: University of St. Andrews. Archived from the original on September 29, 2022. Retrieved February 3, 2024.
  9. ^ Silver, Daniel S. (November–December 2017). "The New Language of Mathematics". The American Scientist. Sigma Xi. 105 (6): 364–371. doi:10.1511/2017.105.6.364. ISSN 0003-0996. LCCN 43020253. OCLC 1480717. S2CID 125455764.
  10. ^ Bellomo, Nicola; Preziosi, Luigi (December 22, 1994). Modelling Mathematical Methods and Scientific Computation. Mathematical Modeling. Vol. 1. CRC Press. p. 1. ISBN 978-0-8493-8331-1. Retrieved November 16, 2022.
  11. ^ Hennig, Christian (2010). "Mathematical Models and Reality: A Constructivist Perspective". Foundations of Science. 15: 29–48. doi:10.1007/s10699-009-9167-x. S2CID 6229200. Retrieved November 17, 2022.
  12. ^ Frigg, Roman; Hartmann, Stephan (February 4, 2020). "Models in Science". Stanford Encyclopedia of Philosophy. Archived from the original on November 17, 2022. Retrieved November 17, 2022.
  13. ^ Stewart, Ian (2018). "Mathematics, Maps, and Models". In Wuppuluri, Shyam; Doria, Francisco Antonio (eds.). The Map and the Territory: Exploring the Foundations of Science, Thought and Reality. The Frontiers Collection. Springer. pp. 345–356. doi:10.1007/978-3-319-72478-2_18. ISBN 978-3-319-72478-2. Retrieved November 17, 2022.
  14. ^ "The science checklist applied: Mathematics". Understanding Science. University of California, Berkeley. Archived from the original on October 27, 2019. Retrieved October 27, 2019.
  15. ^ Mackay, A. L. (1991). Dictionary of Scientific Quotations. London: Taylor & Francis. p. 100. ISBN 978-0-7503-0106-0. Retrieved March 19, 2023.
  16. ^ Bishop, Alan (1991). "Environmental activities and mathematical culture". Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN 978-0-7923-1270-3. Retrieved April 5, 2020.
  17. ^ Shasha, Dennis Elliot; Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. p. 228. ISBN 978-0-387-98269-4.
  18. ^ Nickles, Thomas (2013). "The Problem of Demarcation". Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104. ISBN 978-0-226-05182-6.
  19. ^ Pigliucci, Massimo (2014). "Are There 'Other' Ways of Knowing?". Philosophy Now. Archived from the original on May 13, 2020. Retrieved April 6, 2020.
  20. ^ أ ب Ferreirós, J. (2007). "Ό Θεὸς Άριθμητίζει: The Rise of Pure Mathematics as Arithmetic with Gauss". In Goldstein, Catherine; Schappacher, Norbert; Schwermer, Joachim (eds.). The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae. Springer Science & Business Media. pp. 235–268. ISBN 978-3-540-34720-0.
  21. ^ Kuhn, Thomas S. (1976). "Mathematical vs. Experimental Traditions in the Development of Physical Science". The Journal of Interdisciplinary History. The MIT Press. 7 (1): 1–31. doi:10.2307/202372. JSTOR 202372.
  22. ^ Asper, Markus (2009). "The two cultures of mathematics in ancient Greece". In Robson, Eleanor; Stedall, Jacqueline (eds.). The Oxford Handbook of the History of Mathematics. Oxford Handbooks in Mathematics. OUP Oxford. pp. 107–132. ISBN 978-0-19-921312-2. Retrieved November 18, 2022.
  23. ^ Gozwami, Pinkimani; Singh, Madan Mohan (2019). "Integer Factorization Problem". In Ahmad, Khaleel; Doja, M. N.; Udzir, Nur Izura; Singh, Manu Pratap (eds.). Emerging Security Algorithms and Techniques. CRC Press. pp. 59–60. ISBN 978-0-8153-6145-9. LCCN 2019010556. OCLC 1082226900.
  24. ^ Maddy, P. (2008). "How applied mathematics became pure" (PDF). The Review of Symbolic Logic. 1 (1): 16–41. doi:10.1017/S1755020308080027. S2CID 18122406. Archived (PDF) from the original on August 12, 2017. Retrieved November 19, 2022.
  25. ^ Silver, Daniel S. (2017). "In Defense of Pure Mathematics". In Pitici, Mircea (ed.). The Best Writing on Mathematics, 2016. Princeton University Press. pp. 17–26. ISBN 978-0-691-17529-4. Retrieved November 19, 2022.
  26. ^ Parshall, Karen Hunger (2022). "The American Mathematical Society and Applied Mathematics from the 1920s to the 1950s: A Revisionist Account". Bulletin of the American Mathematical Society. 59 (3): 405–427. doi:10.1090/bull/1754. S2CID 249561106. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
  27. ^ Stolz, Michael (2002). "The History Of Applied Mathematics And The History Of Society". Synthese. 133: 43–57. doi:10.1023/A:1020823608217. S2CID 34271623. Retrieved November 20, 2022.
  28. ^ Lin, C. C . (March 1976). "On the role of applied mathematics". Advances in Mathematics. 19 (3): 267–288. doi:10.1016/0001-8708(76)90024-4.
  29. ^ Peressini, Anthony (September 1999). "Applying Pure Mathematics" in Philosophy of Science. Proceedings of the 1998 Biennial Meetings of the Philosophy of Science Association. Part I: Contributed Papers. 66: S1–S13. 
  30. ^ Lützen, J. (2011). "Mathematics meets physics: A contribution to their interaction in the 19th and the first half of the 20th century"., Verlag Harri Deutsch. 
  31. ^ Marker, Dave (July 1996). "Model theory and exponentiation". Notices of the American Mathematical Society. 43 (7): 753–759. Archived from the original on March 13, 2014. Retrieved November 19, 2022.
  32. ^ (August 2014) "Cylindrical Algebraic Decomposition in the RegularChains Library" in International Congress on Mathematical Software 2014. 8592, Springer. doi:10.1007/978-3-662-44199-2_65. 
  33. ^ Pérez-Escobar, José Antonio; Sarikaya, Deniz (2021). "Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy". European Journal for Philosophy of Science. 12 (1): 1–22. doi:10.1007/s13194-021-00435-9. S2CID 245465895.
  34. ^ Takase, M. (2014). "Pure Mathematics and Applied Mathematics are Inseparably Intertwined: Observation of the Early Analysis of the Infinity". A Mathematical Approach to Research Problems of Science and Technology. Mathematics for Industry. Vol. 5. Tokyo: Springer. pp. 393–399. doi:10.1007/978-4-431-55060-0_29. ISBN 978-4-431-55059-4. Retrieved November 20, 2022.
  35. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة MSC
  36. ^ Wigner, Eugene (1960). "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". Communications on Pure and Applied Mathematics. 13 (1): 1–14. Bibcode:1960CPAM...13....1W. doi:10.1002/cpa.3160130102. S2CID 6112252. Archived from the original on فبراير 28, 2011.
  37. ^ Sarukkai, Sundar (February 10, 2005). "Revisiting the 'unreasonable effectiveness' of mathematics". Current Science. 88 (3): 415–423. JSTOR 24110208.
  38. ^ Wagstaff, Samuel S. Jr. (2021). "History of Integer Factoring" (PDF). In Bos, Joppe W.; Stam, Martijn (eds.). Computational Cryptography, Algorithmic Aspects of Cryptography, A Tribute to AKL. London Mathematical Society Lecture Notes Series 469. Cambridge University Press. pp. 41–77. Archived (PDF) from the original on November 20, 2022. Retrieved November 20, 2022.
  39. ^ "Curves: Ellipse". MacTutor. School of Mathematics and Statistics, University of St Andrews, Scotland. Archived from the original on October 14, 2022. Retrieved November 20, 2022.
  40. ^ Mukunth, Vasudevan (September 10, 2015). "Beyond the Surface of Einstein's Relativity Lay a Chimerical Geometry". The Wire. Archived from the original on November 20, 2022. Retrieved November 20, 2022.
  41. ^ Wilson, Edwin B.; Lewis, Gilbert N. (November 1912). "The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics". Proceedings of the American Academy of Arts and Sciences. 48 (11): 389–507. doi:10.2307/20022840. JSTOR 20022840.
  42. ^ أ ب خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة borel
  43. ^ Hanson, Norwood Russell (November 1961). "Discovering the Positron (I)". The British Journal for the Philosophy of Science. The University of Chicago Press. 12 (47): 194–214. doi:10.1093/bjps/xiii.49.54. JSTOR 685207.
  44. ^ Ginammi, Michele (February 2016). "Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the Ω particle". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 53: 20–27. Bibcode:2016SHPMP..53...20G. doi:10.1016/j.shpsb.2015.12.001.
  45. ^ Wagh, Sanjay Moreshwar; Deshpande, Dilip Abasaheb (September 27, 2012). Essentials of Physics (in الإنجليزية). PHI Learning Pvt. Ltd. p. 3. ISBN 978-81-203-4642-0. Retrieved January 3, 2023.
  46. ^ Atiyah, Michael (1990). "On the Work of Edward Witten" in Proceedings of the International Congress of Mathematicians.. 
  47. ^ "Course 18C Mathematics with Computer Science". math.mit.edu. Retrieved June 1, 2024.
  48. ^ "Theoretical Computer Science". math.mit.edu. Retrieved June 1, 2024.
  49. ^ "Real-Life Applications of Discrete Mathematics". GeeksforGeeks (in الإنجليزية الأمريكية). April 8, 2024. Retrieved May 19, 2024.
  50. ^ Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; Mclaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi (in الإنجليزية). 5: e2. doi:10.1017/fmp.2017.1. hdl:2066/176365. ISSN 2050-5086. S2CID 216912822. Archived from the original on December 4, 2020. Retrieved February 25, 2023.
  51. ^ أ ب ت Millstein, Roberta (September 8, 2016). "Probability in Biology: The Case of Fitness" (PDF). In Hájek, Alan; Hitchcock, Christopher (eds.). The Oxford Handbook of Probability and Philosophy. pp. 601–622. doi:10.1093/oxfordhb/9780199607617.013.27. Archived (PDF) from the original on March 7, 2023. Retrieved December 29, 2022.
  52. ^ See for example Anne Laurent, Roland Gamet, Jérôme Pantel, Tendances nouvelles en modélisation pour l'environnement, actes du congrès «Programme environnement, vie et sociétés» 15–17 janvier 1996, CNRS
  53. ^ Bouleau 1999, pp. 282–283.
  54. ^ Bouleau 1999, p. 285.
  55. ^ "1.4: The Lotka-Volterra Predator-Prey Model". Mathematics LibreTexts (in الإنجليزية). January 5, 2022. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  56. ^ Salsburg, David (August 17, 1992). "Commentary" (PDF). The Use of Statistical Methods in the Analysis of Clinical Studies. 46: 17.
  57. ^ National Research Council (2003). "8". Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering (in الإنجليزية). NAP.edu. pp. 71–73. doi:10.17226/10633. ISBN 978-0-309-16839-7. PMID 25032300.
  58. ^ "Catastrophe Models (Property)". content.naic.org (in الإنجليزية). Retrieved May 19, 2024.
  59. ^ "MAM2001 Essay". ww2.amstat.org. Retrieved May 19, 2024.
  60. ^ Hill, Mullica (September 7, 2022). "HOW MATH IS USED IN WEATHER FORECASTING". mathnasium.com. Retrieved May 19, 2024.
  61. ^ "Using Mathematical Models to Investigate Planetary Habitability" (PDF). NASA. Retrieved May 19, 2024.
  62. ^ Edling, Christofer R. (2002). "Mathematics in Sociology". Annual Review of Sociology (in الإنجليزية). 28 (1): 197–220. doi:10.1146/annurev.soc.28.110601.140942. ISSN 0360-0572.
  63. ^ Batchelder, William H. (January 1, 2015), Wright, James D., ed., Mathematical Psychology: History, Oxford: Elsevier, pp. 808–815, ISBN 978-0-08-097087-5, https://www.sciencedirect.com/science/article/pii/B978008097086843059X, retrieved on September 30, 2023 
  64. ^ أ ب Zak, Paul J. (2010). Moral Markets: The Critical Role of Values in the Economy (in الإنجليزية). Princeton University Press. p. 158. ISBN 978-1-4008-3736-6. Retrieved January 3, 2023.
  65. ^ Levin, Jonathan; Milgrom, Paul (September 2004). Introduction to Choice Theory (PDF).
  66. ^ Kremer, Michael; Rao, Gautam; Schilbach, Frank (2019). "Chapter 5 Behavioral development economics". Handbook of Behavioral Economics: Applications and Foundations (PDF). Vol. 2.
  67. ^ "Mathematics". mdpi.com.
  68. ^ "Kondratiev, Nikolai Dmitrievich | Encyclopedia.com". www.encyclopedia.com. Archived from the original on July 1, 2016. Retrieved December 29, 2022.
  69. ^ "Mathématique de l'histoire-géometrie et cinématique. Lois de Brück. Chronologie géodésique de la Bible., by Charles LAGRANGE et al. | The Online Books Page". onlinebooks.library.upenn.edu.
  70. ^ "Cliodynamics: a science for predicting the future" (in الإنجليزية). ZDNet. Archived from the original on December 29, 2022. Retrieved December 29, 2022.
  71. ^ Sokal, Alan; Jean Bricmont (1998). Fashionable Nonsense. New York: Picador. ISBN 978-0-312-19545-8. OCLC 39605994.
  72. ^ "Biden's Misleading Unemployment Statistic – FactCheck.org".
  73. ^ "Modern Macroeconomic Models as Tools for Economic Policy | Federal Reserve Bank of Minneapolis". minneapolisfed.org.
  74. ^ Balaguer, Mark (2016). "Platonism in Metaphysics". In Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy (Spring 2016 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on January 30, 2022. Retrieved April 2, 2022.
  75. ^ See White, L. (1947). "The locus of mathematical reality: An anthropological footnote". Philosophy of Science. 14 (4): 289–303. doi:10.1086/286957. S2CID 119887253. 189303; also in Newman, J. R. (1956). The World of Mathematics. Vol. 4. New York: Simon and Schuster. pp. 2348–2364.
  76. ^ Dorato, Mauro (2005). "Why are laws mathematical?" (PDF). The Software of the Universe, An Introduction to the History and Philosophy of Laws of Nature. Ashgate. pp. 31–66. ISBN 978-0-7546-3994-7. Archived (PDF) from the original on August 17, 2023. Retrieved December 5, 2022.
  77. ^ Mura, Roberta (Dec 1993). "Images of Mathematics Held by University Teachers of Mathematical Sciences". Educational Studies in Mathematics. 25 (4): 375–85. doi:10.1007/BF01273907. JSTOR 3482762. S2CID 122351146.
  78. ^ Tobies, Renate; Neunzert, Helmut (2012). Iris Runge: A Life at the Crossroads of Mathematics, Science, and Industry. Springer. p. 9. ISBN 978-3-0348-0229-1. Retrieved June 20, 2015. [I]t is first necessary to ask what is meant by mathematics in general. Illustrious scholars have debated this matter until they were blue in the face, and yet no consensus has been reached about whether mathematics is a natural science, a branch of the humanities, or an art form.
  79. ^ (November 2, 2017) ""What is Mathematics?" and why we should ask, where one should experience and learn that, and how to teach it" in Proceedings of the 13th International Congress on Mathematical Education.: 63–77, Springer. doi:10.1007/978-3-319-62597-3_5.  (Sections "What is Mathematics?" and "What is Mathematics, Really?")
  80. ^ Mura 1993, pp. 379, 381.
  81. ^ Brown & Porter 1995, p. 326.
  82. ^ Strauss, Danie (2011). "Defining mathematics". Acta Academica. 43 (4): 1–28. Retrieved November 25, 2022.
  83. ^ Franklin, James (2009). Philosophy of Mathematics. Elsevier. pp. 104–106. ISBN 978-0-08-093058-9. Retrieved June 20, 2015.
  84. ^ Cajori, Florian (1893). A History of Mathematics. American Mathematical Society (1991 reprint). pp. 285–286. ISBN 978-0-8218-2102-2. Retrieved June 20, 2015.
  85. ^ Devlin 2018, p. 3.
  86. ^ Saunders Maclane (1986). Mathematics, form and function. Springer., page 409
  87. ^ Brown, Ronald; Porter, Timothy (1995). "The Methodology of Mathematics". The Mathematical Gazette. 79 (485): 321–334. doi:10.2307/3618304. JSTOR 3618304. S2CID 178923299. Archived from the original on March 23, 2023. Retrieved November 25, 2022.
  88. ^ Hamami, Yacin (June 2022). "Mathematical Rigor and Proof" (PDF). The Review of Symbolic Logic. 15 (2): 409–449. doi:10.1017/S1755020319000443. S2CID 209980693. Archived (PDF) from the original on December 5, 2022. Retrieved November 21, 2022.
  89. ^ Peterson 1988, p. 4: "A few complain that the computer program can't be verified properly." (in reference to the Haken–Appel proof of the Four Color Theorem)
  90. ^ أ ب ت خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة Kleiner_1991
  91. ^ Perminov, V. Ya. (1988). "On the Reliability of Mathematical Proofs". Philosophy of Mathematics. Revue Internationale de Philosophie. 42 (167 (4)): 500–508.
  92. ^ Davis, Jon D.; McDuffie, Amy Roth; Drake, Corey; Seiwell, Amanda L. (2019). "Teachers' perceptions of the official curriculum: Problem solving and rigor". International Journal of Educational Research. 93: 91–100. doi:10.1016/j.ijer.2018.10.002. S2CID 149753721.
  93. ^ Zeidler, Eberhard (2004). Oxford User's Guide to Mathematics. Oxford, UK: Oxford University Press. p. 1188. ISBN 0-19-850763-1.
  94. ^ Shasha, Dennis Elliot; Lazere, Cathy A. (1998). Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. p. 228.{{cite book}}: CS1 maint: multiple names: authors list (link)

خطأ استشهاد: الوسم <ref> ذو الاسم "future" المُعرّف في <references> غير مستخدم في النص السابق.

خطأ استشهاد: الوسم <ref> ذو الاسم "devlin" المُعرّف في <references> غير مستخدم في النص السابق.

المصادر

قراءات إضافية

  • Benson, Donald C., The Moment of Proof: Mathematical Epiphanies, Oxford University Press, USA; New Ed edition (December 14, 2000). ISBN 0-19-513919-4.
  • Boyer, Carl B., A History of Mathematics, Wiley; 2nd edition, revised by Uta C. Merzbach, (March 6, 1991). ISBN 0-471-54397-7.—A concise history of mathematics from the Concept of Number to contemporary Mathematics.
  • Davis, Philip J. and Hersh, Reuben, The Mathematical Experience. Mariner Books; Reprint edition (January 14, 1999). ISBN 0-395-92968-7.
  • Gullberg, Jan, Mathematics – From the Birth of Numbers. W. W. Norton & Company; 1st edition (October 1997). ISBN 0-393-04002-X.
  • Hazewinkel, Michiel (ed.), Encyclopaedia of Mathematics. Kluwer Academic Publishers 2000. – A translated and expanded version of a Soviet mathematics encyclopedia, in ten (expensive) volumes, the most complete and authoritative work available. Also in paperback and on CD-ROM, and online.
  • Jourdain, Philip E. B., The Nature of Mathematics, in The World of Mathematics, James R. Newman, editor, Dover Publications, 2003, ISBN 0-486-43268-8.
  • Maier, Annaliese, At the Threshold of Exact Science: Selected Writings of Annaliese Maier on Late Medieval Natural Philosophy, edited by Steven Sargent, Philadelphia: University of Pennsylvania Press, 1982.

وصلات خارجية

قالب:Wikiversity school

  • [1], Mathematics Behind Robotics.

خطأ لوا في وحدة:Authority_control على السطر 278: attempt to call field '_showMessage' (a nil value).


خطأ استشهاد: وسوم <ref> موجودة لمجموعة اسمها "lower-alpha"، ولكن لم يتم العثور على وسم <references group="lower-alpha"/>