بنية رياضية

في الرياضيات: البنية Mathematical structure على مجموعة ما، أو بشكل عام أكثر نمط، تتألف من كائنات رياضية إضافية ترتبط بهذه المجموعة، لتسهيل إظهار هذه المجموعة و العمل بها، أو إكساب هذه المجموعة معنى و أهمية .

يمكن سرد قائمة جزئية بالبنى الممكنة مثل: القياسات، البنى الجبرية، الطوبولوجيات، البنى المترية ، الهندسيات، الترتيبيات، العلاقات التكافؤية.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التاريخ

In 1939, the French group with the pseudonym Nicolas Bourbaki saw structures as the root of mathematics. They first mentioned them in their "Fascicule" of Theory of Sets and expanded it into Chapter IV of the 1957 edition.[1] They identified three mother structures: algebraic, topological, and order.[1][2]


مثال: الأعداد الحقيقية

The set of real numbers has several standard structures:

  • An order: each number is either less or more than any other number.
  • Algebraic structure: there are operations of multiplication and addition that make it into a field.
  • A measure: intervals of the real line have a specific length, which can be extended to the Lebesgue measure on many of its subsets.
  • A metric: there is a notion of distance between points.
  • A geometry: it is equipped with a metric and is flat.
  • A topology: there is a notion of open sets.

There are interfaces among these:

  • Its order and, independently, its metric structure induce its topology.
  • Its order and algebraic structure make it into an ordered field.
  • Its algebraic structure and topology make it into a Lie group, a type of topological group.

انظر أيضاً

المراجع

  1. ^ أ ب Corry, Leo (September 1992). "Nicolas Bourbaki and the concept of mathematical structure". Synthese. 92 (3): 315–348. doi:10.1007/bf00414286. JSTOR 20117057. S2CID 16981077.
  2. ^ Wells, Richard B. (2010). Biological signal processing and computational neuroscience (PDF). pp. 296–335. Retrieved 7 April 2016.

للاستزادة

وصلات خارجية

فروع الرياضيات التي تهتم بدراسة البنية
جبر تجريدي | نظرية الأعداد | الهندسة الجبرية | نظرية الزمر | المونويدات | التحليل الرياضي | الطوبولوجيا | جبر خطي | نظرية المخططات | الجبر الشامل | نظرية التصنيف | نظرية الترتيب | نظرية القياس