حساب مثلثات

The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of the trigonometric functions of those angles.
All of the trigonometric functions of an angle θ can be constructed geometrically in terms of a unit circle centered at O.
In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.

علم المثلثات هو فرع من الرياضيات يدرس الزوايا و المثلثات و التوابع المثلثية مثل الجيب و الجيب تمام. علم المثلثات هو أحد فروع علم الهندسة العامة. يعتبر قدماء المصريين أول من عمل بقواعد حساب المثلثات ، إذ استخدموها في بناء الأهرامات وبناء معابدهم . لكن قليل من الموروث عنهم في هيئة مخطوطات ، ومنها أن عرّّفوا مساحة الدائرة بكونها مساوية ل 9و0 لمساحة المربع المحيط بها المماس لها من أربع أضلاع . وترجع معرفتنا بحساب المثلثات إلى الإغريق الذين وضعوا قوانينها .

لعلم المثلثات تطبيقات كثيرة، منها حساب المسافات والزوايا في إنشاء المباني والطرق وفي صناعة الموتورات وأجهزة التلفزيون والأثاث وملاعب الكرة ، وكذلك وفي حساب المسافات الجغرافية و الفلك ، وفي أنظمة الاستكشاف بالأقمار الصناعية .

يكون مثلثان متشابهان إذا كانت الزوايا المتقابلة من كل منهما متساوية، أي عندما ينتج أحدهما عن الآخر بتكبيرة أو تصغيره . وتكون أطوال أضلاع المثلثين المتشابهين متناسبة. أي انه إذا كان طول أقصر اضلاع المثلث الأول ضعف طول أقصر اضلاع المثلث الثاني ، فان طول كل من الضلعين الأطول و المتوسط من المثلث الأول يكون ضعف طولي الضلعين الأطول و المتوسط من المثلث الثاني أيضا، و بالتالي فان النسبة بين طولي الضلعين الأقصر و الأطول في المثلث الأول مساوية للنسبة بين طولي الضلعين الأقصر و الأطول في المثلث الثاني.

اعتمادا على هذه القوانين ، من الممكن تعريف التوابع المثلثية، مستخدمين المثلث القائم. وهناك القانون القائل انه إذا تساوت زاويتان في مثلثين قائمين ، فان هذين المثلثين متشابهان ، و تكون النسبة بين الضلع المقابلة للزاويتين المتساويتين، وتر كل من المثلثين (الضلع المقابلة للزاوية القائمة) متساوية بالنسبة لكل من المثلثين و تعتمد فقط على قيمة الزاوية، و ستكون عددا بين 0 و 1، تدعى هذه النسبة بجيب الزاوية. بشكل مماثل، يمكن تعريف تجيب الزاوية على أنها النسبة بين الضلع المجاور لها و الوتر.

جيب زاوية = المحور الصادي

جيب تمام زاوية = المحور السيني

تابعا الجيب و الجيب هما أهم التوابع المثلثية، هناك أيضا توابع أخرى تعرف باخذ نسب أخرى من اضلاع المثلث القائم، أو نسب من التابعين الأساسيين جيب و تجيب، هذه التوابع هي: طل، تطل، قا، و تقا.

ظل الزاوية = جيب الزاوية/ جيب تمام الزاوية ظل تمام الزاوية = جيب تمام الزاوية / جيب الزاوية قا (قاطع) = 1 / جتا يه قاطع تمام (قتا) = 1 / جيب بهذا نكون قد عرفنا التوابع المثلثية للزوايا من 0 إلى 90، من الممكن توسيع تعريفنا ليشمل كل القيم الحقيقية للزوايا باستخدام الدائرة الواحدية.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

استطراد التعريفات

Graphs of the functions sin(x) and cos(x), where the angle x is measured in radians.

عند إمكانية حساب التوابع المثلثية (من جداول أو الآلة الحاسبة) و معرفة قيم ضلع و زاويتين أو ضلعين و زاوية أو ثلاثة اضلاع من المثلث، يمكن إيجاد قيم باقي عناصر المثلث (زوايا وأضلاع) باستخدام قوانين الجيب و قوانين جيب تمام .

  • هذا بخصوص حساب المثلثات المستوية. وهناك فرع لا يقل أهمية عنه وهو حساب المثلثات علي السطح الكري، وهذا الفرع مهم بصفة خاصة في الفلك وفي الملاحة.


انظر أيضاً

الهامش

المصادر

  • Boyer, Carl B. (1991). A History of Mathematics (Second Edition ed.). John Wiley & Sons, Inc. ISBN 0471543977. {{cite book}}: |edition= has extra text (help)
  • Christopher M. Linton (2004). From Eudoxus to Einstein: A History of Mathematical Astronomy . Cambridge University Press.
  • Weisstein, Eric W. "Trigonometric Addition Formulas". Wolfram MathWorld.

وصلات خارجية