مغنسيوم

(تم التحويل من مغنيسيوم)
المغنسيوم, 00Mg
CSIRO ScienceImage 2893 Crystalised magnesium.jpg
المغنسيوم
المظهرصلب رمادي لامع
الوزن الذري العياري Ar°(Mg)
المغنسيوم في الجدول الدوري
Hydrogen (reactive nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (reactive nonmetal)
Nitrogen (reactive nonmetal)
Oxygen (reactive nonmetal)
Fluorine (reactive nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (reactive nonmetal)
Sulfur (reactive nonmetal)
Chlorine (reactive nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (post-transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (reactive nonmetal)
Bromine (reactive nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (post-transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (reactive nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (post-transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (post-transition metal)
Nihonium (unknown chemical properties)
Flerovium (unknown chemical properties)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)
Be

Mg

Ca
الصوديومالمغنسيومالألومنيوم
الرقم الذري (Z)12
المجموعة2
الدورةperiod 3
المستوى الفرعي  s-block
التوزيع الإلكتروني[Ne] 3s2
الإلكترونات بالغلاف2, 8, 2
الخصائص الطبيعية
الطور at د.ح.ض.قصلب
نقطة الانصهار923 K ​(650 °س، ​1202 °F)
نقطة الغليان1363 K ​(1091 °س، ​1994 °ف)
الكثافة (بالقرب من د.ح.غ.)1.738 ج/سم³
حين يكون سائلاً (عند ن.إ.)1.584 ج/سم³
حرارة الانصهار8.48 kJ/mol
حرارة التبخر128 kJ/mol
السعة الحرارية المولية24.869 J/(mol·K)
ضغط البخار
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 701 773 861 971 1132 1361
الخصائص الذرية
حالات الأكسدة+2, +1[1] ​(a strongly basic oxide)
الكهرسلبيةمقياس پاولنگ: 1.31
طاقات التأين
  • الأول: 737.7 kJ/mol
  • الثاني: 1450.7 kJ/mol
  • الثالث: 7732.7 kJ/mol
  • (المزيد)
نصف القطر الذريempirical: 160 pm
نصف قطر التكافؤ141±7 pm
نصف قطر ڤان در ڤالز173 pm
Color lines in a spectral range
خصائص أخرى
البنية البلوريةhexagonal close-packed (hcp)
Hexagonal close packed crystal structure for المغنسيوم
سرعة الصوت قضيب رفيع156 W/(m·K)
التمدد الحراري24.8 µm/(m⋅K) (عند 25 °س)
المقاومة الكهربائية43.9 nΩ⋅m (at 20 °C)
الترتيب المغناطيسيمغناطيسي مساير
معامل يونگ45 GPa
معامل القص17 GPa
معاير الحجم45 GPa
نسبة پواسون0.290
صلادة موز1–2.5
صلادة برينل44–260 MPa
رقم كاس7439-95-4
التاريخ
التسميةعلى اسم مغنسيا، اليونان
الاكتشافجوسف بلاك (1755)
أول عزلهمفري ديڤي (1808)
نظائر الالمغنسيوم v • [{{fullurl:Template:{{{template}}}|action=edit}} e] 
قالب:جدول نظائر المغنسيوم غير موجود
تصنيف التصنيف: المغنسيوم
| المراجع

المغنِسيوم Magnesium، هو عنصر كيميائي فلزي في الجدول الدوري، يرمز له بالحرفين (ما) بالعربية، Mg باللاتينية وعدده الذري 12، ترتيبه بين العناصر من حيث الوفرة في الطبيعة هو الثامن، ويشكل 2% من القشرة الأرضية. Like the other alkaline earth metals (group 2 of the periodic table), it occurs naturally only in combination with other elements and almost always has an oxidation state of +2. It reacts readily with air to form a thin passivation coating of magnesium oxide that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by electrolysis of magnesium salts obtained from brine. It is less dense than aluminium and is used primarily as a component in strong and lightweight alloys that contain aluminium.

In the cosmos, magnesium is produced in large, aging stars by the sequential addition of three helium nuclei to a carbon nucleus. When such stars explode as supernovas, much of the magnesium is expelled into the interstellar medium where it may recycle into new star systems. Magnesium is the eighth most abundant element in the Earth's crust[4] and the fourth most common element in the Earth (after iron, oxygen and silicon), making up 13% of the planet's mass and a large fraction of the planet's mantle. It is the third most abundant element dissolved in seawater, after sodium and chlorine.[5]

This element is the eleventh most abundant element by mass in the human body and is essential to all cells and some 300 enzymes.[6] Magnesium ions interact with polyphosphate compounds such as ATP, DNA, and RNA. Hundreds of enzymes require magnesium ions to function. Magnesium compounds are used medicinally as common laxatives and antacids (such as milk of magnesia), and to stabilize abnormal nerve excitation or blood vessel spasm in such conditions as eclampsia.[6]

السمات

السمات الطبيعية

Elemental magnesium is a gray-white lightweight metal, two-thirds the density of aluminium. Magnesium has the lowest melting (923 K (650 °C)) and the lowest boiling point (1,363 K (1,090 °C)) of all the alkaline earth metals.[7]

Pure polycrystalline magnesium is brittle and easily fractures along shear bands. It becomes much more malleable when alloyed with small amounts of other metals, such as 1% aluminium.[8] The malleability of polycrystalline magnesium can also be significantly improved by reducing its grain size to about 1 μm or less.[9]

When finely powdered, magnesium reacts with water to produce hydrogen gas:

Mg(s) + 2 H2O(g) → Mg(OH)2(aq) + H2(g) + 1203.6 kJ/mol

However, this reaction is much less dramatic than the reactions of the alkali metals with water, because the magnesium hydroxide builds up on the surface of the magnesium metal and inhibits further reaction.[10]

الخصائص الكيميائية

الأكسدة

The principal property of magnesium metal is its reducing power. One hint is that it tarnishes slightly when exposed to air, although, unlike the heavier alkaline earth metals, an oxygen-free environment is unnecessary for storage because magnesium is protected by a thin layer of oxide that is fairly impermeable and difficult to remove.[11]

Direct reaction of magnesium with air or oxygen at ambient pressure forms only the "normal" oxide MgO. However, this oxide may be combined with hydrogen peroxide to form magnesium peroxide, MgO2, and at low temperature the peroxide may be further reacted with ozone to form magnesium superoxide Mg(O2)2.[12]

Magnesium reacts with nitrogen in the solid state if it is powdered and heated to just below the melting point, forming Magnesium nitride Mg3N2.[13]

Magnesium reacts with water at room temperature, though it reacts much more slowly than calcium, a similar group 2 metal.[11] When submerged in water, hydrogen bubbles form slowly on the surface of the metal; this reaction happens much more rapidly with powdered magnesium.[11] The reaction also occurs faster with higher temperatures (see #Safety precautions § Notes). Magnesium's reversible reaction with water can be harnessed to store energy and run a magnesium-based engine. Magnesium also reacts exothermically with most acids such as hydrochloric acid (HCl), producing magnesium chloride and hydrogen gas, similar to the HCl reaction with aluminium, zinc, and many other metals.[14] Although it is difficult to ignite in mass or bulk, magnesium metal will ignite.

Magnesium may also be used as an igniter for thermite, a mixture of aluminium and iron oxide powder that ignites only at a very high temperature.

الكيمياء العضوية

Organomagnesium compounds are widespread in organic chemistry. They are commonly found as Grignard reagents, formed by reaction of magnesium with haloalkanes. Examples of Grignard reagents are phenylmagnesium bromide and ethylmagnesium bromide. The Grignard reagents function as a common nucleophile, attacking the electrophilic group such as the carbon atom that is present within the polar bond of a carbonyl group.

A prominent organomagnesium reagent beyond Grignard reagents is magnesium anthracene, which is used as a source of highly active magnesium. The related butadiene-magnesium adduct serves as a source for the butadiene dianion.

Complexes of dimagnesium(I) have been observed.[15]

الكشف في المحاليل

The presence of magnesium ions can be detected by the addition of ammonium chloride, ammonium hydroxide and monosodium phosphate to an aqueous or dilute HCl solution of the salt. The formation of a white precipitate indicates the presence of magnesium ions.

Azo violet dye can also be used, turning deep blue in the presence of an alkaline solution of magnesium salt. The color is due to the adsorption of azo violet by Mg(OH)2.

الأشكال

السبائك

Magnesium is brittle, and fractures along shear bands when its thickness is reduced by only 10% by cold rolling (top). However, after alloying Mg with 1% Al and 0.1% Ca, its thickness could be reduced by 54% using the same process (bottom).

As of 2013, magnesium alloys consumption was less than one million tonnes per year, compared with 50 million tonnes of aluminium alloys. Their use has been historically limited by the tendency of Mg alloys to corrode,[16] creep at high temperatures, and combust.[17]

التآكل

In magnesium alloys, the presence of iron, nickel, copper, or cobalt strongly activates corrosion. In more than trace amounts, these metals precipitate as intermetallic compounds, and the precipitate locales function as active cathodic sites that reduce water, causing the loss of magnesium.[17] Controlling the quantity of these metals improves corrosion resistance. Sufficient manganese overcomes the corrosive effects of iron. This requires precise control over composition, increasing costs.[17] Adding a cathodic poison captures atomic hydrogen within the structure of a metal. This prevents the formation of free hydrogen gas, an essential factor of corrosive chemical processes. The addition of about one in three hundred parts arsenic reduces the corrosion rate of magnesium in a salt solution by a factor of nearly ten.[17][18]

الزحف عند درجات حرارة مرتفعة وقابلية الاشتعال

Magnesium's tendency to creep (gradually deform) at high temperatures is greatly reduced by alloying with zinc and rare-earth elements.[19] Flammability is significantly reduced by a small amount of calcium in the alloy.[17] By using rare-earth elements, it may be possible to manufacture magnesium alloys that are able to not catch fire at higher temperatures compared to magnesium's liquidus and in some cases potentially pushing it close to magnesium's boiling point.[20]

المركبات

Magnesium forms a variety of compounds important to industry and biology, including magnesium carbonate, magnesium chloride, magnesium citrate, magnesium hydroxide (milk of magnesia), magnesium oxide, magnesium sulfate, and magnesium sulfate heptahydrate (Epsom salts).[21][22]

As recently as 2020, magnesium hydride was under investigation as a way to store hydrogen.[23][24]


النظائر

Magnesium has three stable isotopes: 24 Mg, 25 Mg and 26 Mg. All are present in significant amounts in nature (see table of isotopes above). About 79% of Mg is 24 Mg. The isotope 28 Mg is radioactive and in the 1950s to 1970s was produced by several nuclear power plants for use in scientific experiments. This isotope has a relatively short half-life (21 hours) and its use was limited by shipping times.

The nuclide 26 Mg has found application in isotopic geology, similar to that of aluminium. 26 Mg is a radiogenic daughter product of 26 Al, which has a half-life of 717,000 years. Excessive quantities of stable 26 Mg have been observed in the Ca-Al-rich inclusions of some carbonaceous chondrite meteorites. This anomalous abundance is attributed to the decay of its parent 26 Al in the inclusions, and researchers conclude that such meteorites were formed in the solar nebula before the 26 Al had decayed. These are among the oldest objects in the Solar System and contain preserved information about its early history.

It is conventional to plot 26 Mg/24 Mg against an Al/Mg ratio. In an isochron dating plot, the Al/Mg ratio plotted is 27 Al/24 Mg. The slope of the isochron has no age significance, but indicates the initial 26 Al/27 Al ratio in the sample at the time when the systems were separated from a common reservoir.

الانتاج

Magnesium sheets and ingots

التواجد

Magnesium is the eighth-most-abundant element in the Earth's crust by mass and tied in seventh place with iron in molarity.[4] It is found in large deposits of magnesite, dolomite, and other minerals, and in mineral waters, where magnesium ion is soluble.[25]

Although magnesium is found in more than 60 minerals, only dolomite, magnesite, brucite, carnallite, talc, and olivine are of commercial importance.[26]

The Mg2+  cation is the second-most-abundant cation in seawater (about 18 the mass of sodium ions in a given sample), which makes seawater and sea salt attractive commercial sources for Mg.

كميات الانتاج

World production was approximately 1,100 kt in 2017, with the bulk being produced in China (930 kt) and Russia (60 kt).[27] The United States was in the 20th century the major world supplier of this metal, supplying 45% of world production even as recently as 1995. Since the Chinese mastery of the Pidgeon process the US market share is at 7%, with a single US producer left as of 2013: US Magnesium, a Renco Group company located on the shores of the Great Salt Lake.[28]

In September 2021, China took steps to reduce production of magnesium as a result of a government initiative to reduce energy availability for manufacturing industries, leading to a significant price increase.[29]

عمليتا پدجن وبولزانو

An Iranian worker tends to the Pidgeon process

The Pidgeon process and the Bolzano process are similar. In both, magnesium oxide is the precursor to magnesium metal. The magnesium oxide is produced as a solid solution with calcium oxide by calcining the mineral dolomite, which is a solid solution of calcium and magnesium carbonates:

CaCO
3
·MgCO
3
→ MgO·CaO + 2 CO
2

Reduction occurs at high temperatures with silicon. A ferrosilicon alloy is used rather than pure silicon as it is more economical. The iron component has no bearing on the reaction, having the simplified equation:[بحاجة لمصدر]

MgO·CaO +Si → 2 Mg + Ca
2
SiO
4

The calcium oxide combines with silicon as the oxygen scavenger, yielding the very stable calcium silicate. The Mg/Ca ratio of the precursors can be adjusted by the addition of MgO or CaO.[30]

The Pidgeon and the Bolzano process differ in the details of the heating and the configuration of the reactor. Both generate gaseous Mg that is condensed and collected. The Pidgeon process dominates the worldwide production.[31][32] The Pidgeon method is less technologically complex and because of distillation/vapour deposition conditions, a high purity product is easily achievable.[31] China is almost completely reliant on the silicothermic Pidgeon process.


عملية داو

Besides the Pidgeon process, the second most used process for magnesium production is electrolysis. This is a two step process. The first step is to prepare feedstock containing magnesium chloride and the second step is to dissociate the compound in electrolytic cells as magnesium metal and chlorine gas.[32]

To extract the magnesium, calcium hydroxide is added to the seawater to precipitate magnesium hydroxide.[33]

MgCl 2 + Ca(OH) 2Mg(OH) 2 + CaCl 2

Magnesium hydroxide (brucite) is poorly soluble in water and can be collected by filtration. It reacts with hydrochloric acid to magnesium chloride.[34]

Mg(OH) 2 + 2 HCl → MgCl 2 + 2 H 2O

From magnesium chloride, electrolysis produces magnesium.[35]

The basic reaction is as follows:

MgCl
2
→ Mg(g) + Cl
2
(g)

The temperatures at which this reaction is operated is between 680 and 750 °C.[32]

The magnesium chloride can be obtained using the Dow process, a process that mixes sea water and dolomite in a flocculator or by dehydration of magnesium chloride brines. The electrolytic cells are partially submerged in a molten salt electrolyte to which the produced magnesium chloride is added in concentrations between 6–18%.[32] This process does have its share of disadvantages including production of harmful chlorine gas and the overall reaction being very energy intensive, creating environmental risks.[36] The Pidgeon process is more advantageous regarding its simplicity, shorter construction period, low power consumption and overall good magnesium quality compared to the electrolysis method.[11]

In the United States, magnesium was once obtained principally with the Dow process in Corpus Christi TX, by electrolysis of fused magnesium chloride from brine and sea water. A saline solution containing Mg2+  ions is first treated with lime (calcium oxide) and the precipitated magnesium hydroxide is collected:

Mg2+ (aq) + CaO(s) + H 2O(l) → Ca2+ (aq) + Mg(OH) 2(s)

The hydroxide is then converted to magnesium chloride by treatment with hydrochloric acid and heating of the product to eliminate water:

Mg(OH)
2
+ 2 HCl → MgCl
2
+ 2 H
2
O

The salt is then electrolyzed in the molten state. At the cathode, the Mg2+  ion is reduced by two electrons to magnesium metal:

Mg2+  + 2Error no symbol defined → Mg

At the anode, each pair of Cl  ions is oxidized to chlorine gas, releasing two electrons to complete the circuit:

2Cl Cl 2(g) + 2Error no symbol defined

Carbothermic process

The carbothermic route to magnesium has been recognized as a low energy, yet high productivity path to magnesium extraction. The chemistry is as follows:

The rotary kiln is used for calcination

C + MgO → CO + Mg

A disadvantage of this method is that slow cooling the vapour can cause the reaction to quickly revert. To prevent this from happening, the magnesium can be dissolved directly in a suitable metal solvent before reversion starts happening. Rapid quenching of the vapour can also be performed to prevent reversion.[37]

YSZ process

A newer process, solid oxide membrane technology, involves the electrolytic reduction of MgO. At the cathode, Mg2+  ion is reduced by two electrons to magnesium metal. The electrolyte is yttria-stabilized zirconia (YSZ). The anode is a liquid metal. At the YSZ/liquid metal anode O2−  is oxidized. A layer of graphite borders the liquid metal anode, and at this interface carbon and oxygen react to form carbon monoxide. When silver is used as the liquid metal anode, there is no reductant carbon or hydrogen needed, and only oxygen gas is evolved at the anode.[38] It was reported in 2011 that this method provides a 40% reduction in cost per pound over the electrolytic reduction method.[39]

عملية ريكه

Rieke et al. developed a "general approach for preparing highly reactive metal powders by reducing metal salts in ethereal or hydrocarbon solvents using alkali metals as reducing agents" now known as the Rieke process.[40] Rieke finalized the identification of Rieke metals in 1989,[41] one of which was Rieke-magnesium, first produced in 1974.[42]

التاريخ

The name magnesium originates from the Greek word for locations related to the tribe of the Magnetes, either a district in Thessaly called Magnesia[43] or Magnesia ad Sipylum, now in Turkey.[44] It is related to magnetite and manganese, which also originated from this area, and required differentiation as separate substances. See manganese for this history.

In 1618, a farmer at Epsom in England attempted to give his cows water from a local well. The cows refused to drink because of the water's bitter taste, but the farmer noticed that the water seemed to heal scratches and rashes. The substance obtained by evaporating the water became known as Epsom salts and its fame spread.[45] It was eventually recognized as hydrated magnesium sulfate, MgSO 4·7H 2O.[46]

The metal itself was first isolated by Sir Humphry Davy in England in 1808. He used electrolysis on a mixture of magnesia and mercuric oxide.[47] Antoine Bussy prepared it in coherent form in 1831. Davy's first suggestion for a name was 'magnium',[47] but the name magnesium is now used in most European languages.[48]

Further discoveries about magnesium were made by the father of physical chemistry in Imperial Russia, Nikolai Beketov (1827-1911), who established that magnesium and zinc displaced other metals from their salts under high temperatures.

الاستخدامات

المغنسيوم كفلز

منتجات المغنسيوم: مـُشعِل و برو shavings, مبراة, رقاقة مغنسيوم
سيارة تجريبية من فولكس واجن من المغنسيوم عام 2002، يقودها رئيس مجلس الإدارة السابق للشركة فرديناند پيش ، وكان جالساً في المقعد الخلفي خليفته برند بيشيتسريدر.

تستخدم مركبات المغنسيوم , وبالأساس اكسيد المغنسيوم, بصفة عامة لعمل المادة الحرارية في بطانة الأفران و المحولات لإنتاج الحديد والصلب واللافلزات والزجاج والأسمنت.

يستخدم كذلك اكسيد المغنسيوم والمركبات الأخرى في الصناعات الزراعية والكيميائية والإنشائية. وكفلز, فالإستخدام الرئيسي لهذا العنصر هو كإضافة سبـائكية للألومنيوم في سبائك الألومنيوم-منجنيز المستخدمة أساساً في صناعة العبوات الصفيحية للمشروبات.

المغنسيوم, في أنقى صوره, يمكن مقارنته بالألومنيوم, فهو قوي وخفيف, ولذلك يستخدم في العديد من التطبيقات لتصنيع جزء ما بكميات كبيرة, بما فيها أجزاء السيارات والشاحنات. فالعجلات الخاصة فائقة القوة للسيارات المصنوعة من سبيكة مغنسيوم تسمى "عجلات مغنسيوم mag wheels". ففي 1957 كورڤيت Corvette SS, تم تصميمها للسباق, وبـُني جسمها من ألواح مغنسيوم. مسعى پورشه الدءوب لإنقاص وزن سيارات السباق لديها أدى بها لاستعمال هياكل من المغنسيوم في موديلها الشهير 917/053 الذي فاز في سباق لومان Le Mans عام 1971, ومازال يحتفظ بالرقم القياسي المطلق للمسافة. السيارة موديل 917/30 Can-Am تميزت أيضاً بهيكل فراغي من المغنسيوم, ساعدها على استغلال مزايا محركها العبقري الذي بلغت قدرته 1100-1500 حصان. فولكس واجن استعملت المغنسيوم في مكونات محركاتها للعديد من السنوات. وفي أكتوبر 2007 طالعت فولكس واجن العالم بخبر طرح سيارة مصنوعة بالكامل من المغنسيوم وتتميز هذه السيارة بأنها سيارة صديقة للبيئة، يتم فيها مراعاة التقليل من إنبعاثات ثاني أكسيد الكربون وكذلك تكون منخفضة الإستهلاك في الوقود ، وأضف لهذا خفة وزن السيارة وسرعتها الفائقة. ومن الجدير بالذكر أن عند البدء في تنفيذ الفكرة كان العائق الأساسي هو إرتفاع سعر السيارة حيث بلغ تقريبا 35 ألف يورو وذلك بسبب خامات المغنسيوم المستخدمة لصنع المحركات وجسم السيارة بالكامل ويدرس حاليا كيفية تخفيض تلك التكاليف لعمل السيارة على نطاق تجاري. وتم تنفيذ نموذج للسيارة من المغنسيوم فجاءت على شكل مركبة فضائية. وأطلقت السيارة التجريبية الأولى من هذا النوع عام 2002، حيث قادها رئيس مجلس الإدارة السابق للشركة فرديناند پيش ، وكان جالساً في المقعد الخلفي خليفته برند پيشيتسريدر. [49]

ولمدة طويلة, استخدمت بورشه سبيكة المغنسيوم لصناعة كتلة المحرك لمزايا الوزن. ولقد تجدد الاهتمام بصنع المحركات من المغنسيوم, سيارات كما نرى في موديلات عام 2006 من BMW 325i و 330i. محرك BMW يستعمل حشو من سبيكة ألومنيوم لحوائط الأسطوانات و أقمصة التبريد محاطة بسبيكة مغنسيوم مقاومة للحرارة هى AJ62A. و قد أعطى استخدام سبيكة المغنسيوم AE44 في مهد محرك موديل عام 2006 من سيارة كورڤيت Z06 دفعة لتكنولوجيا تصميم أجزاء سيارات تتطلب القوة باستخدام المغنسيوم. و كلا السبيكتين اضافة حديثة لعائلة سبائك المغنسيوم المقاومة للحرارة العالية و المنخفضة الزحف . الاستراتيجية العامة لمثل تلك السبائك هو تشكيل الرواسب بين الفلزية عند حدود الحبيبات, على سبيل المثال بإضافة السبيكة النادرة وهى سبيكة سيريوم مع فلزات أرضية نادرة أخرى أو كالسيوم.[50] استعملت فولكس واگن المغنسيوم في مكونات محركاتها للعديد من السنوات. وفي أكتوبر 2007 فاجئت العالم بنيتها صناعة سيارة بالكامل من المغنسيوم بربع وزن مثيلتها من الصلب ولذلك فهي أسرع ولكن تستهلك وقوداً أقل، أي أنها ستولد ك أ2 أقل ولذلك فهي حقاً سيارة صديقة للبيئة. ومن الجدير بالذكر أن عند البدء في تنفيذ الفكرة كان العائق الأساسي هو إرتفاع سعر السيارة حيث بلغ تقريبا 35 ألف يورو. وذلك بسبب ارتفاع سعر المغنسيوم المنتج بالتحليل المائي من البحر الميت بإسرائيل الذي كانت فولكس واگن تنوي شراءه، عن ضعف سعر المغنسيوم الصيني المنتج عن طريق عملية پيدجن دون فارق في المواصفات.[51] التطويرات الحديثة لسبائك المغنسيوم وانخفاض تكلفتها, التي جعلتها منافسة لسبائك الألومنيوم, ستزيد من استخداماتها في صناعة السيارات.

مجال الاستخدامات الثاني للمغنسيوم هو الأجهزة الإلكترونية. فبفضل وزنه الخفيف, وخصائصه الميكانيكية والكهربائية الجيدة, يـُستخدم المغنسيوم على نطاق واسع في تصنيع الهواتف المحمولة والحاسبات المحمولة والكاميرات والأجزاء الإلكترونية الأخرى. بل ويستخدم المغنسيوم لصناعة النسخ الفاخرة من لعبة اليو-يو, مثل Duncan Freehand Mg.

تاريخياً,كان المغنسيوم أحد الفلزات الرئيسية المستخدمة في انشاءات صناعة الفضاء وقد استخدمته الطائرات الحربية الألمانية منذ الحرب العالمية الأولى وزاد هذا الاستخدام بشكل مضطرد في الحرب العالمية الثانية. وقد صاغ الألمان الاسم 'إلكترون Elektron' لسبيكة المغنسيوم التي مازالت تستعمل حتى اليوم. وبسبب المخاطر الإنطباعية عن الأجزاء المصنوعة من المغنسيوم في حالة الحريق, فإن استخدام المغنسيوم في صناعة الطيران والفضاء التجارية تم قصرها بصفة عامة على المكونات المرتبطة بالمحرك. وحالياً يتزايد استخدام سبائك المغنسيوم في صناعة الفضاء, والسبب الرئيسي وراء ذلك هو الأهمية المتزايدة لاقتصاديات الوقود والحاجة لتخفيض الوزن. تطوير واختبار سبائك مغنسيوم جديدة وأشهرهم إلكترون 21 الذي اجتاز اختبارات شاملة مطولة في صناعة الفضاء والطيران لمناسبته في كل من مكونات المحرك, والهيكل الجوي. الاتحاد الاوروبي لديه ثلاثة مشاريع لأبحاث وتطوير متعلقة بالمغنسيوم في صناعة الطيران والفضاء في برنامج الهياكل الستة.

مشعل نار من المغنسيوم (في اليد اليسرى), يستعمل مع مطواة وحجر صوان flint لعمل الشرارة التي ستشعل البرو.
  • الاستخدامات الإشتعالية: المغنسيوم قابل للإشتعال, ويحترق عند درجة حرارة حوالي 2500 K (2200 °م, 4000 °ف), و درجة الإشتعال الذاتي للمغنسيوم هي حوالي 744 ك (473 °م, 883 °ف) في الهواء. درجة الحرارة فائقة الإرتفاع التي يشتعل عندها المغنسيوم تجعله أداة طيعة لبدء حرائق الطوارئ أثناء الرحلات الترفيهية خارج المنازل. الاستخدامات الأخرى الشبيهة تتضمن التصوير باستخدام ضوء الفلاش, الشعلات, علم الاشتعال pyrotechnics, الألعاب النارية الشرارية, والقنابل الحارقة.

استخداماته الأخرى تتضمن:

في مركبات المغنسيوم

للمغنسيوم درجة أكسدة وحيدة هي +2، أي إنه يخسر إلكتروني التكافؤ فيه عندما يدخل في أي تفاعل. وهو، مثل البريليوم، قلّما يتأثر بالماء عند درجة الحرارة العادية بعكس العناصر الثقيلة في الفصيلة. وهو يحترق بشعلة مضيئة في جو من الهواء أو الأكسجين مكوناً أكسيد المغنسيوم MgO، كما تتكون كمية من النتريد Mg3N2 عندما يحترق في الهواء، وهو يحترق في الحال، لكهرجابيته العالية، في جو من ثنائي أكسيد الكربون ويتكوَّن أكسيد المعدن وكربون. وعند درجات الحرارة المنخفضة، يتكون على سطح المعدن غشاء رقيق من الأكسيد يحميه من استمرار الأكسدة بسرعة. يطلق المغنسيوم الهدروجينَ ببطء شديد بتفاعله مع الماء. ينحل بالحموض بسهولة. وهو مرجع قوي يتأكسد بتفاعله مع العناصر عالية الكهرسلبية. من أبرز مركباته:[52]

  • الأكسيد MgO صعب الانصهار، وهو ثابت جداً لا يتفكك عند درجات الحرارة الأخفض من 3000 ْس. وهو ناقل سيء للكهرباء.

يستعمل أكسيد المغنسيوم، ويطلق عليه اسم مغنسيا، بهيئة آجرات لتبطين الأفران. وتستعمل كميات كبيرة من خليط أكسيدي المغنسيوم والكالسيوم بديلاً من المغنسيا النقية بتكليس الدولوميت.

ويترسب هدروكسيد المغنسيوم من محلول ملح مغنسيوم بإضافة أساس قوي. وهو قليل الانحلال. كربونات المغنسيوم الطبيعي MgCO3 يُصادف على هيئة مغنزيت. والملح الأساسي المترسب يُستعمل في الطب تحت اسم مغنسيا ألبا magnesia alba أساساً ضعيفاً، وللفعل الفيزيولوجي لأيون المغنسيوم. وتُستعمل كميات كبيرة منه في تحضير ملمِّعات الفضة، كما يُستعمل في تحضير مسحوق الأسنان. ويستعمل كل من الملح الطبيعي والكربونات المضاعفة مع الكلسيوم، الدولوميت، تجارياً، لاستحصال ثنائي أكسيد الكربون. هيدروكسيد المغنسيوم يـُستعمل في لبن المغنسيا, و كلوريده و اكسيده, گلوكوناته و ستراته يستعملوا كإضافات غذائية فموية, و تستعمل كبريتاته (أملاح إپسوم) لأغراض مختلفة في الطب, وغيره (انظر المقالة للمزيد). اضافات المغنسيوم الفموية قيل أن له مفعول علاحي لبعض individuals who suffer from Restless Leg Syndrome (RLS). [بحاجة لمصدر]

  • يستعمل المغنسيت المُكَلَّس لأغراض حرارية مثل الطوب وبطانة الأفران والمحولات.
  • كربونات المغنسيوم MgCO3 ضعيفة الانحلال بالماء، كما أنها تتحلل بالحرارة ويتكون ثنائي أكسيد الكربون ويبقى الأكسيد:
    9891-2.jpg

مسحوق كربونات المغنسيوم (MgCO3) يستعمله أيضاً الرياضيون, مثل لاعبي الجمباز و رافعي الأثقال, ليحسنوا من امساكهم بالأغراض - حصان الجمباز أو lifting bar.

  • ستيارات المغنسيوم قابل للاشتعال بدرجة صغيرة مسحوق أبيض مع صفات مزلـِّقة. يـُستخدم في التكنولوجيا الدوائية في صناعة الأقراص, لمنع الأقراص من الالتصاق بالمعدات أثناء عملية ضغط الأقراص (أي, عندما يتم تـُضغط مادة القرص لتصبح في شكل قرص).
  • كبريتات المغنسيوم MgSO4 تُصادف على هيئة بلورات مميّههَ MgSO4.7H2O وهي جيدة الانحلال بالماء ويُطلق عليها اسم ملح إبسوم Epsom. وقد شاع استعمالها مليّناً في الطب.ويستخدم في انتاج الورق (عملية الكبريتيت).
  • فوسفات المغنسيوم تستخدم لحماية الخشب من الحريق للإنشاءات.
  • سادس فلوروسيليكات المغنسيوم تستخدم في حماية الأنسجة من العتة.
  • هاليدات المغنسيوم : فلوريد المغنسيوم MgF2 عديم الانحلال بالماء. وهو يمرِّر الأشعة فوق البنفسجية، حتى 0.1 مكرون. ويُصادف كلوريد المغنسيوم في ملح الطعام، لقابليته للتميع يؤدي إلى تكتل ملح الطعام في الجو الرطب. ويمكن الحيلولة دون هذا التكتل بإضافة كربونات الصوديوم الحامضة لتكون كربونات المغنسيوم الأساسية.

أما كلوريد المغنسيوم فيتميّه مكوِّناً الملح المائي MgCl2.6H2O

مركبات المغنسيوم العضوية

مركبات المغنسيوم R−Mg−X وتدعى كواشف غرينيار والمركبات MgR2. وتستحصل كواشف غرينيار بتفاعل المعدن مع الهاليد العضوي في محلّ مناسب مثل ثنائي إيتيل إيتر أو تترا هيدروفوران. أما MgR2 فتستحصل بالتفاعل الآتي من دون وجود ماء:

9891-7.jpg


إن المركبات RMgX بحالة محلولات solvates و R2Mg فعّالة كيمياوياً وهي حساسة للأكسدة بالهواء وللحلمهة بالماء.

تاريخ

الاسم ينبع من الكلمة اليونانية لمقاطعة في ثساليا اسمها مغنسيا. وهي ذات علاقة بكلمتي مغنتيت magnetite و منجنيز manganese, اللتان ينبعان أيضاً من تلك المنطقة, واحتاجتا اسمان مختلفان لتمييز المواد المختلفة. انظر manganese لهذا التاريخ.

المغنسيوم هو سابع أكثر العناصر تواجداً في القشرة الأرضية، بالكتلة، والثامن حسب molarity.[4] وتتواجد في الطبيعة في رواسب كبيرة من مغنسيت, دولوميت, وأملاح أخرى, وفي المياه المعدنية, حيث يكون أيون المغنسيوم قابل للذوبان. وفي 1618 حاول مزارع في إبسوم بإنجلترة أن يسقى بقره من بئر. البقر رفض أن يشرب من البئر للطعم المر لماء البئر. المزارع لاحظ بالرغم من ذلك أن مياه ذلك البئر يبدو أنها تشفي الجروح والبثور. شهرة أملاح إبسوم انتشرت. ولاحقاً عـُرف أن مياه البئر تحتوي على كبريتات المغنسيوم المائية, MgSO4.

في انجلترا, عزل السير همفري ديفي بالتحليل المائي فلز المغنسيوم النقي عام 1808 من خليط المغنسيا و HgO, و حضـّره "أ. بوسى" A. A. B. Bussy في صيغة متسقة عام 1831. أول اسم اقترحه ديفي للفلز كان مغنيوم, إلا أن الاسم استقر على مغنسيوم.

مصادره

بالرغم من تواجد المغنسيوم في أكثر من 60 معدن, فقط الدولوميت, المغنسيت, البروسيت, الكرناليت, التلك, و اولڤين لهم أهمية تجارية.

والمغنسيوم يكِّون 2.5% من القشرة الأرضية فهو يأتي بالدرجة الثامنة في سعة انتشاره، والعنصر السادس بين المعادن الأكثر انتشاراً.

عدده الذري 12، وزنه الذري 24.312 ، حجم المول: 14.0سم3/ مول، بنيته الإلكترونية في الذرة الحرة: (2) (8) 2، كتلته الحجمية 1.738غ/سم3، نقطة انصهاره 650 ْس، نقطة غليانه 1110 ْس، الكهرسلبية 1.2، كمون المسرى (فلط)m2.37=M2+/M

في الولايات المتحدة يُستخرج هذا الفلز أساساً بواسطة التحليل المائي كلوريد المغنسيوم المصهور من ماء الملح, الآبار, و مياه البحر:

المهبط: Mg2+ + 2 e- → Mg
المصعد: 2 Cl- → Cl2 (غاز) + 2 e-
بلورات المغنسيوم مكثفة من البخار بطريقة Pidgeon process

كانت الولايات المتحدة تقليدياً المورِّد الرئيسي في العالم لهذا الفلز, بتوريدها 45% من انتاج العالم وذلك حتى عام 1995. واليوم, فنصيب الولايات المتحدة من السوق العالمية هو 7%, مع بقاء مـُنتـِج محلي واحد فقط, US Magnesium, وهي شركة مولودة من الشركة المنحلة Magcorp.[53] وبحلول عام 2005 أصبحت الصين المورِّد المسيطر, بتوريدها 60% من الانتاج العالمي, الذي كان 4% عام 1995. وعلى العكس من عملية التحليل الكهربي المشروحة آنفاً, تعتمد الصين بدرجة شبه كاملة على طريقة مختلفة لاستخراج الفلز من خاماته, the silicothermic Pidgeon process (الاختزال الحرارى بالسيليكون).

المغنسيوم من ماء البحر

الأيون الموجب Mg2+ هو ثاني أكثر الأيونات الموجبة وفرةً في ماء البحر (يتوافر بنسبة نحو 12% من كتلة الصوديوم فيه), مما يجعل ماء البحر وملح البحر مصدراً تجارياً جذاباً للمغنسيوم. ولاستخراج المغنسيوم, تـُضاف كربونات الكالسيوم إلى ماء البحر لتكوين راسب كربونات المغنسيوم.

MgCl2 + CaCO3 → MgCO3 + CaCl2

كربونات المغنسيوم لا تقبل الذوبان في الماء ولذلك يمكن ترشيحها, وتتفاعل مع حمض الهيدروكلوريك للحصول على كلوريد المغنسيوم المركز.

MgCO3 + 2HCl → MgCl2 + CO2 + H2O

من كلوريد المغنسيوم, التحليل الكهربي يبنج المغنسيوم.

تحضيره

المغنسيوم أهم عناصر فصيلته. هناك طريقتان رئيستان لاستحصاله. إحداهما تعتمد على التحليل الكهربائي لماء البحر، والأخرى الطريقة الحرارية السيليكونية silicothermic ويستعمل فلز الدولوميت في الطريقة الثانية.

طريقة التحليل الكهربائي

تعتمد هذه الطريقة على تحليل كلوريد المغنسيوم فينتج الكلور ومعدن المغنسيوم. يمكن استعمال المغنسيت، والدولوميت والمياه المالحة الطبيعية مواد أولية في هذه الطريقة إلا أن ماء البحر هو المصدر الرئيسي لهذه الغاية إذ يحوي 0.13% مغنسيوم.

يفصل المغنسيوم من ماء البحر على هيئةMg(OH)2 قليل الانحلال. ويرسَّب هدروكسيد المغنسيوم بإضافة أساس رخيص الثمن وذلك بإضافة القواقع البحرية CaCo3 التي تعطي بتسخينها غاز الكربون CO2 وأكسيد الكالسيوم أو الكلس الحي CaO، وهذا بدوره يتحول إلى هدروكسيد الكالسيوم Ca(OH)2 فيعطي أيون الهدروكسيد الذي يرسب Mg(OH)2.

9891-4.jpg


ويفصل Mg(OH)2 بالترشيح، ويعدَّل بحمض رخيص هو حمض كلور الماء.

9891-1.jpg


وبِتبخير المحلول يبقى كلوريد المغنسيوم المميَّه الصلب. وبعد تجفيفه، يُصهَر عند الدرجة 807 ْس ثم يحلَّل كهربائياً فيعطي المغنسيوم والكلور الناتج المفيد تجارياً.

9891-3.jpg


الطريقة الحرارية السيليكونية

يُرجَع أكسيد المغنسيوم بالسيليكون الحديدي Ferro-silicon بوجود الكلس الحي.

9891-6.jpg


ويعمل الحديد حاملاً للسيليكون ولا يشترك في التفاعل.

سبائكه

يدخل المغنسيوم في سبائك (أشابات) متنوعة، فهو يعزّز قوة الأشابة من دون زيادة في وزنها.

يكوّن المغنسيوم سبائك مع الألمنيوم والزنك(الخارصين) والمنجنيز والسيليكون والزركونيوم ومعادن الأتربة النادرة rare-earth metals الثوريوم، أو الأتريوم.

وتراوح الكتلة الحجمية لسبائكه بين 1.74 و 1.83غ/سم3. وإن خفة هذه السبائك هي التي ساعدت على استعمالها في صنع الطائرات، والنقل، وصنع الأدوات المختلفة.

أكثر هذه السبائك أهمية في التجارة هي خلائط (Mg-Al-Zn). ويمكن تعديل خواصها بالمعالجات الحرارية المناسبة. ولهذه الخلائط صفة سيئة وهي أنها تخسر قوتها بسرعة بارتفاع درجة الحرارة خاصة فوق الدرجة 941 ْس. ولهذا انصبّ الاهتمام على تطوير السبائك (الخلائط) التي تحوي معادن الأتربة النادرة أو الثوريوم أو كليهما مكوِّنات رئيسية في السبيكة. إذ تستعمل هذه السبائك في المجال الحراري بين 371 ْس و 482 ْس أو أعلى حسب المدة التي تعرّض لها المعدن عند درجات الحرارة المرتفعة. وأفضل معدن ترابي نادر النيوديميوم. ويكوِّن المغنسيوم سبائك مع الفضة يمكن استعمالها بدرجات حرارة مرتفعة (316 ْس). واستعمال الأتربة النادرة والثوريوم وسّع مجال تطبيقات سبائك المغنسيوم في صنع الصواريخ missiles والمراكب الفضائية spacecrafts .

وسبائك المغنسيوم - ألمنيوم - سيليكون التي تستعمل في المجال 135 ْس - 190 ْس تحسن سيولة السبيكة وقولبتها، ولهذا تصلح في الآلات الميكانيكية. وللمغنسيوم ميزة في صنع مواد البناء وهي قدرته على امتصاص الاهتزازات الميكانيكية. وبصورة عامة، إضافة العناصر المختلفة إلى السبيكة تنقص هذه الخاصة.

يكوِّن المغنسيوم مع الأتريوم طائفة من السبائك تتميز من جميع السبائك السابقة بخواصها من حيث صبها casting ولا سيما في مجال الحرارة المرتفعة، وفي مقاومة التآكل.

البيولوجيا

أيونات المغنسيوم أساسية لكيمياء حياة الحمض النووي الأساسية, فهو يأتي بالدرجة الثانية بين الأيونات الموجبة من حيث الكم داخل الخلايا، كما أنه يأتي في المرتبة الرابعة، بسعة انتشاره، في الجسم. وله دور كبير في العظام والأسنان. ويدخل في عمليات كيميائية حيوية رئيسية في الخلايا. ويوجد في الخلايا إمّا حراً وإما مرتبطاً مع الأدينوسين ثلاثي الفوسفات adenosine triphosphate (ATP)، أو مع الحموض النووية، أو الكلوروفيل (اليخضور)، أو في الأنزيمات المنشَّطة بفعل الأيون Mg2+. ولذلك فهي هامة لكل الخلايا لجميع العضيات الحية. النباتات لها استخدام اضافي للمغنسيوم في كون الكلوروفيلات پورفيرينات متمركزة حول المغنسيوم. ويحتاج العديد من الإنزيمات إلى وجود إنزيمات المغنسيوم لإداء عملهم المساعدcatalytic action, وخاصة الإنزيمات التي تستعمل ثلاثي فوسفات الأدنوسين Adenosine triphosphate - ATP, أو اولئك الذين يستخدمون نيوكلوتيدات أخرى لتخليق دنا ورنا. نقص المغنسيوم في النباتات يسبب اصفرار في نهاية الموسم بين عروق الأوراق, خاصة في الأوراق القديمة, ويمكن اصلاح ذلك برش أملاح إپسوم (التي تـُرشــّح بسرعة), أو بدلاً من ذلك حجر جيري دولوميتي مفتت إلى التربة.

المصادر الغذائية للمغنسيوم

المغنسيوم هو مكون أساسي للغذاء البشري الصحي ونقصه يسبب عدداً من الأمراض. ويتواجد المغنسيوم في العديد من الأطعمة الشائعة إلا أن الدراسات تبين معاناة الكثيرين من نقص المغنسيوم. المغنسيوم الزائد في الدم يتم ترشيحه في الكلى, ولهذا السبب فإنه من الصعب أن يعاني المرء من جرعة زائدة من المغنسيوم من مصادره الغذائية وحدها.[54] إلا أن هناك عدد من عقاقير الإضافات supplements المغنسيوم التي تجعل تعاطي جرعة زائدة خطراً محتملاً, وخصوصاً في الأشخاص الذين يعانون من مشاكل في الوظائف البولية, ولكن يمكن حدوث hypermagnesemia شديدة بدون فشل كلوي.[55]

النظائر

للمغنسيوم ثلاث نظائر مستقرة: 24Mg, 25Mg, 26Mg. وثلاثتهم متواجدون بكميات كبيرة (انظر جدول النظائر أعلاه). فنحو 79% من المغنسيوم هو 24Mg. والنظير 28Mg مشع وفي الخمسينات إلى السبعينات كان يـُنتج تجارياً في العديد من المفاعلات النووية لتوليد الطاقة للاستخدام في التجارب العلمية. ولهذا النظير نصف عمر قصير نسبياً (21 ساعة) ولذلك فاستخدامه كان يحده زمن النقل.

26Mg وجد استخداماً في الجيولوجيا النظائرية, مثل دور الألومنيوم. 26Mg هو radiogenic daughter product of 26Al, الذي له نصف عمر قدره 717,000 سنة. إثراءات enrichments كبيرة من 26Mg مستقر لوحظت في Ca-Al-rich inclusions في بعض النيازك carbonaceous chondrite. التوافر الشاذ للنظير 26Mg يـُعزى إلى اضمحلال decay النظير الوالد 26Al في inclusions. ولذلك, فالنيزك حتماً قد تشكل في السديم الشمسي قبل أن يضمحل 26Al. ولذلك, فهذه الشظايا هي بين أقدم الأشياء في النظام الشمسي وقد احتفظت بمعلومات عن تاريخها المبكر.

ومن المعتاد رسم 26Mg/24Mg أمام نسبة Al/Mg. ففي رسم isochron dating, فنسبة Al/Mg المرسومة هي 27Al/24Mg. ميل of the isochron ليس له أهمية عـُمرية, إلا أنه يوضح النسبة 26Al/27Al المبدئية في العينة عند وقت فصل الأنظمة من مستودع مشترك.

محاذير

سيارة السباق هوندا F1 موديل RA302 ذات الجسم المصنوع من المغنسيوم والتي كان يقودها جو شلسر ترتطم وتشتعل أثناء گران پري الفرنسي عام 1968. شلسر لقي مصرعه في الحادث.

فلز المغنسيوم وسبائكه قابلون للاشتعال بدرجة كبيرة في صيغتهم النقية سواءً كان مصهوراً, مسحوقاً أو على شكل شريط. المغنسيوم المشتعل أو المصهور يتفاعل بعنف مع الماء. مسحوق المغنسيوم يشكل خطر انفجار. ويجب على المتعاملين مع المغنسيوم ارتداء نظارات واقية, وإذا كان مشتعلاً, فالنظارات يجب أن يكون عليها مرشـِّح تقيل للآشعة فوق البنفسجية, مماثلة لتلك المستخدمة في عمليات اللحام. الضوء الأبيض الساطع (بما فيه الآشعة فوق البنفسجية) الناتج عن اشتعال المغنسيوم يمكن أن يلحق ضرراً دائماً بشبكية العين, مثل حروق لحام القوس.[56]

يجب ألا يـُستخدم الماء في إطفاء حرائق المغنسيوم, لأنه يستطيع انتاج هيدروجين الذي يزيد من اضطرام النار, حسب التفاعل التالي:[57]

Mg (s) + 2 H2O (g) → Mg(OH)2 (s) + H2 (g)
أو بالكلمات:
مغنسيوم (صلب) + بخار ماء → هيدروكسيد المغنسيوم (صلب) + هيدروجين (غاز)

طفايات الحريق المستعملة لثاني اكسيد الكربون يجب ألا يستعملوا كذلك, لأن المغنسيوم يمكن أن يشتعل في ثاني اكسيد الكربون (مكوناً اكسيد المغنسيوم, MgO, و كربون).[58] طفايات الحريق الكيماوية الجافة من النمط د هي ما يجب استعماله إذا توافرت, وإلا فيجب تغطية النار بالرمل أو flux مسبك المغنسيوم. والطريقة السهلة لإطفاء حرائق فلزية صغيرة هي بوضع كيس پولي إثيلين مملوء بالرمل الجاف فوق النار. حرارة النار ستذيب الكيس والرمل سينساب على النار ليخمدها.

انظر أيضاً

المصادر

  1. ^ Bernath, P. F., Black, J. H., & Brault, J. W. (1985). "The spectrum of magnesium hydride" (PDF). Astrophysical Journal. 298: 375. Bibcode:1985ApJ...298..375B. doi:10.1086/163620.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ Conventional Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  3. ^ Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  4. ^ أ ب ت Railsback, L. Bruce. "Abundance and form of the most abundant elements in Earth's continental crust" (PDF). Some Fundamentals of Mineralogy and Geochemistry. Archived from the original (PDF) on 27 September 2011. Retrieved 15 February 2008. خطأ استشهاد: وسم <ref> غير صالح؛ الاسم "Abundance" معرف أكثر من مرة بمحتويات مختلفة.
  5. ^ Anthoni, J. Floor (2006). "The chemical composition of seawater". Seafriends.
  6. ^ أ ب خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة nih
  7. ^ "alkaline-earth metal – Physical and chemical behaviour". Encyclopædia Britannica (in الإنجليزية). Retrieved 2022-03-27.
  8. ^ Sandlöbes, S.; Friák, M.; Korte-Kerzel, S.; Pei, Z.; Neugebauer, J.; Raabe, D. (2017). "A rare-earth free magnesium alloy with improved intrinsic ductility". Scientific Reports. 7 (1): 10458. Bibcode:2017NatSR...710458S. doi:10.1038/s41598-017-10384-0. PMC 5585333. PMID 28874798.
  9. ^ Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; Davies, Chris H. J.; Birbilis, Nick (2017). "Super-formable pure magnesium at room temperature". Nature Communications. 8 (1): 972. Bibcode:2017NatCo...8..972Z. doi:10.1038/s41467-017-01330-9. PMC 5715137. PMID 29042555.
  10. ^ "Reactions of Group 2 Elements with Water". Chemistry LibreTexts (in الإنجليزية). 2013-10-03. Retrieved 2022-03-27.
  11. ^ أ ب ت ث MMTA. "Magnesium". MMTA (in الإنجليزية الأمريكية). Retrieved 2023-11-08.
  12. ^ Vol'nov, I. I.; Tokareva, S. A.; Belevskii, V. N.; Latysheva, E. I. (March 1970). "The formation of magnesium perperoxide Mg(O2)2 in the reaction of magnesium peroxide with ozone". Bulletin of the Academy of Sciences of the USSR Division of Chemical Science. 19 (3): 468–471. doi:10.1007/bf00848959.
  13. ^ Zong, Fujian; Meng, Chunzhan; Guo, Zhiming; Ji, Feng; Xiao, Hongdi; Zhang, Xijian; Ma, Jin; Ma, Honglei (2010). "Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2". _Journal of Alloys and Compounds. 508 (1): 172–176. doi:10.1016/j.jallcom.2010.07.224.
  14. ^ "The rate of reaction of magnesium with hydrochloric acid". RSC Education (in الإنجليزية). Retrieved 2023-11-08.
  15. ^ Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Harder, S. (29 April 2021). "Strongly reducing magnesium(0) complexes". Nature. 592 (7856): 717–721. Bibcode:2021Natur.592..717R. doi:10.1038/s41586-021-03401-w. PMID 33911274. S2CID 233447380.
  16. ^ Makar, G. L.; Kruger, J. (1993). "Corrosion of magnesium". International Materials Reviews. 38 (3): 138–153. Bibcode:1993IMRv...38..138M. doi:10.1179/imr.1993.38.3.138.
  17. ^ أ ب ت ث ج Dodson, Brian (29 August 2013). "Stainless magnesium breakthrough bodes well for manufacturing industries". Gizmag.com. Retrieved 29 August 2013.
  18. ^ Birbilis, N.; Williams, G.; Gusieva, K.; Samaniego, A.; Gibson, M. A.; McMurray, H. N. (2013). "Poisoning the corrosion of magnesium". Electrochemistry Communications. 34: 295–298. doi:10.1016/j.elecom.2013.07.021.
  19. ^ Choudhuri, Deep; Srinivasan, Srivilliputhur G.; Gibson, Mark A.; Zheng, Yufeng; Jaeger, David L.; Fraser, Hamish L.; Banerjee, Rajarshi (8 December 2017). "Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening". Nature Communications. 8 (1): 2000. Bibcode:2017NatCo...8.2000C. doi:10.1038/s41467-017-02112-z. PMC 5722870. PMID 29222427.
  20. ^ Czerwinski, Frank (September 2014). "Controlling the ignition and flammability of magnesium for aerospace applications". Corrosion Science. 86: 1–16. Bibcode:2014Corro..86....1C. doi:10.1016/j.corsci.2014.04.047.
  21. ^ "8 Types of magnesium and their benefits". www.medicalnewstoday.com (in الإنجليزية). 2021-03-23. Retrieved 2024-05-04.
  22. ^ "Chemistry of Magnesium (Z=12)". Chemistry LibreTexts (in الإنجليزية). 2013-10-02. Retrieved 2024-05-04.
  23. ^ Ren, Chai; Fang, Z. Zak; Zhou, Chengshang; Lu, Jun; Ren, Yang; Zhang, Xiaoyi (25 September 2014). "Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives". The Journal of Physical Chemistry C. 118 (38): 21778–21784. doi:10.1021/jp504766b.
  24. ^ Baran, Agata; Polański, Marek (9 September 2020). "Magnesium-Based Materials for Hydrogen Storage—A Scope Review". Materials. 13 (18): 3993. Bibcode:2020Mate...13.3993B. doi:10.3390/ma13183993. PMC 7559164. PMID 32916910.
  25. ^ "Magnesium EA65RS-T4 Alloy". AZoM (in الإنجليزية). 2013-04-30. Retrieved 2024-05-04.
  26. ^ "Magnesium Statistics and Information | U.S. Geological Survey". www.usgs.gov. Retrieved 2024-05-04.
  27. ^ Bray, E. Lee (February 2019) Magnesium Metal. Mineral Commodity Summaries, U.S. Geological Survey
  28. ^ Vardi, Nathan (6 June 2013). "Man With Many Enemies". Forbes (in الإنجليزية).
  29. ^ "What to do about the magnesium shortage". Supply Management. 17 February 2022. Archived from the original on 17 February 2022.
  30. ^ Amundsen, Ketil; Aune, Terje Kr.; Bakke, Per; et al. (2003). "Magnesium". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley. doi:10.1002/14356007.a15_559. ISBN 978-3-527-30385-4.
  31. ^ أ ب Bamberger M, Dobrzański LA, Totten GE (2020). Magnesium and its alloys : technology and applications (First ed.). Boca Raton, FL: CRC Press, Inc. ISBN 978-1-351-04547-6. OCLC 1111577710.
  32. ^ أ ب ت ث "Magnesium Processing | Techniques & Methods | Britannica". www.britannica.com (in الإنجليزية). Retrieved 2023-04-16.
  33. ^ Battaglia, Giuseppe; Domina, Maria Alda; Lo Brutto, Rita; Lopez Rodriguez, Julio; Fernandez de Labastida, Marc; Cortina, Jose Luis; Pettignano, Alberto; Cipollina, Andrea; Tamburini, Alessandro; Micale, Giorgio (21 December 2022). "Evaluation of the Purity of Magnesium Hydroxide Recovered from Saltwork Bitterns". Water. 15 (1): 29. doi:10.3390/w15010029. hdl:2117/384847.
  34. ^ "Magnesium processing | Techniques & Methods | Britannica". www.britannica.com (in الإنجليزية). Retrieved 2024-05-04.
  35. ^ "Magnesium metal is produced by the electrolysis of molten magnesi... | Channels for Pearson+". www.pearson.com (in الإنجليزية). Retrieved 2024-05-04.
  36. ^ Lee, Tae-Hyuk; Okabe, Toru H.; Lee, Jin-Young; Kim, Young Min; Kang, Jungshin (September 2021). "Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode". Journal of Magnesium and Alloys (in الإنجليزية). 9 (5): 1644–1655. doi:10.1016/j.jma.2021.01.004. S2CID 233930398.
  37. ^ Brooks, Geoffrey; Trang, Simon; Witt, Peter; Khan, M. N. H.; Nagle, Michael (May 2006). "The carbothermic route to magnesium". JOM. 58 (5): 51–55. Bibcode:2006JOM....58e..51B. doi:10.1007/s11837-006-0024-x. ISSN 1047-4838. S2CID 67763716.
  38. ^ Pal, Uday B.; Powell, Adam C. (2007). "The Use of Solid-Oxide-Membrane Technology for Electrometallurgy". JOM. 59 (5): 44–49. Bibcode:2007JOM....59e..44P. doi:10.1007/s11837-007-0064-x. S2CID 97971162.
  39. ^ Derezinski, Steve (12 May 2011). "Solid Oxide Membrane (SOM) Electrolysis of Magnesium: Scale-Up Research and Engineering for Light-Weight Vehicles" (PDF). MOxST. Archived from the original (PDF) on 13 November 2013. Retrieved 27 May 2013.
  40. ^ "Magnesium". Chemical Synthesis Using Highly Reactive Metals. 2017. pp. 161–208. doi:10.1002/9781118929124.ch4. ISBN 978-1-118-92911-7.
  41. ^ Rieke, Reuben D.; Sell, Matthew S.; Klein, Walter R.; Chen, Tian-An; Brown, Jeffrey D.; Hanson, Mark V. (1995). "Rieke Metals: Highly Reactive Metal Powders Prepared by Alkali Metal Reduction of Metal Salts". Active Metals. pp. 1–59. doi:10.1002/9783527615179.ch01. ISBN 978-3-527-29207-3.
  42. ^ Rieke, Reuben D.; Bales, Stephen E. (1974). "ChemInform Abstract: ACTIVATED METALS PART 4, PREPARATION AND REACTIONS OF HIGHLY REACTIVE MAGNESIUM METAL". Chemischer Informationsdienst. 5 (21). doi:10.1002/chin.197421315.
  43. ^ "Magnesium: historical information". webelements.com. Retrieved 9 October 2014.
  44. ^ languagehat (28 May 2005). "Magnet". languagehat.com (in الإنجليزية). Retrieved 18 June 2020.
  45. ^ Ainsworth, Steve (1 June 2013). "Epsom's deep bath". Nurse Prescribing. 11 (6): 269. doi:10.12968/npre.2013.11.6.269.
  46. ^ PubChem. "Magnesium Sulfate Heptahydrate". pubchem.ncbi.nlm.nih.gov (in الإنجليزية). Retrieved 2024-04-28.
  47. ^ أ ب Davy, H. (1808). "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia". Philosophical Transactions of the Royal Society of London. 98: 333–370. Bibcode:1808RSPT...98..333D. doi:10.1098/rstl.1808.0023. JSTOR 107302. S2CID 96364168.
  48. ^ "Magnesium (Mg) - Periodic Table". www.periodictable.one (in الإنجليزية). Retrieved 2024-05-04.
  49. ^ دويتشه ڤيله - صوت ألمانيا
  50. ^ Alan A. Luo and Bob R. Powell (2001). "Tensile and Compressive Creep of Magnesium-Aluminum-Calcium Based Alloys" (PDF). Materials & Processes Laboratory, General Motors Research & Development Center. Retrieved on 2007-08-21.
  51. ^ "Meaner, cleaner, lighter, greener". Motor Trader. 1996-12-02.
  52. ^ هيام بيرقدار. "المغنزيوم". الموسوعة العربية. Retrieved 2012-04-02.
  53. ^ Vardi, Nathan (February 22 2007). "Man With Many Enemies". Forbes.com. Retrieved 2006-06-26. {{cite web}}: Check date values in: |date= (help)
  54. ^ Magnesium
  55. ^ Kontani M, Hara A, Ohta S, Ikeda T (2005). "Hypermagnesemia induced by massive cathartic ingestion in an elderly woman without pre-existing renal dysfunction". Intern. Med. 44 (5): 448–52. PMID 15942092.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  56. ^ "Science Safety: Chapter 8". Government of Manitoba. Retrieved 2007-08-21.
  57. ^ "Chemistry : Periodic Table : magnesium : chemical reaction data". webelements.com. Retrieved 2006-06-26.
  58. ^ "Demo Lab: Reaction Of Magnesium Metal With Carbon Dioxide". Retrieved 2006-06-26.

وصلات خارجية