خط طيفي

طيف مستمر
خطوط امتصاص الهواء، تحت الإضاءة الغير مباشرة، حيث مصدر الضوء المباشر غير مرئي، بالتالي لا يكون الغاز مباشراً بين المصدر والكاشف. هنا، خطوط فراونهوفر في ضوء الشمس وتشتت ريليگ لضوء الشمس هو "المصدر".

الخط الطيفي spectral line، هو خط داكن أو ساطع في طيف .[1][2][3] يتكون طيف الشمس مثلا أو طيف نجم عن رؤيته وتحليلة تحليلاً طيفياً من مجموعات خطوط متوازية متعاقبة تبدأ بلون الضوء الأحمر فالبرتقالي فالأصفر إلى الأخضر والأزرق إلى البنفسجي. تلك هي خطوط الطيف المرئي، وكل منها لها طول موجة معينة، تعتمد على نوع العنصر الذي يبعثها. فإذا شاهدنا طيف الشمس وقمنا بتحليله وجدنا أن معظم خطوط طيفه تنتمي إلى انبعاثات ضوئية من الهيدروجين وقليل من الخطوط تحمل "بصمة " غاز الهيليوم، وهما المكونان الرئيسان للشمس.

من هنا اكتسبت طريقة المطيافية طريقة لفهم مكونات النجوم والشموس والمجرات، وهي تساعد علماء الفلك على استنباط مكونات تلك الأجرام عن طريق تحليل ما يأتي إلينا منها من ضوء.

كذلك المطيافية المستخدمة معمليا تساعد الكيميائي والفيزيائي على استنباط خواص العناصر والمركبات، وتستخدم أيضا في تحليل المركبات وغيرها.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

أنواع خطوط الطيف

Continuous spectrum of an incandescent lamp (وسط) and discrete spectrum lines of a fluorescent lamp (أسفل)

Spectral lines are the result of interaction between a quantum system (usually atoms, but sometimes molecules or atomic nuclei) and a single photon. When a photon has about the right amount of energy (which is connected to its frequency)[4] to allow a change in the energy state of the system (in the case of an atom this is usually an electron changing orbitals), the photon is absorbed. Then the energy will be spontaneously re-emitted, either as one photon at the same frequency as the original one or in a cascade, where the sum of the energies of the photons emitted will be equal to the energy of the one absorbed (assuming the system returns to its original state).

A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material. The intensity of light, over a narrow frequency range, is reduced due to absorption by the material and re-emission in random directions. By contrast, a bright emission line is produced when photons from a hot material are detected, perhaps in the presence of a broad spectrum from a cooler source. The intensity of light, over a narrow frequency range, is increased due to emission by the hot material.

Spectral lines are highly atom-specific, and can be used to identify the chemical composition of any medium. Several elements, including helium, thallium, and caesium, were discovered by spectroscopic means. Spectral lines also depend on the temperature and density of the material, so they are widely used to determine the physical conditions of stars and other celestial bodies that cannot be analyzed by other means.

Depending on the material and its physical conditions, the energy of the involved photons can vary widely, with the spectral lines observed across the electromagnetic spectrum, from radio waves to gamma rays.



التسمية

Strong spectral lines in the visible part of the electromagnetic spectrum often have a unique Fraunhofer line designation, such as K for a line at 393.366 nm emerging from singly-ionized calcium atom, Ca+, though some of the Fraunhofer "lines" are blends of multiple lines from several different species.

In other cases, the lines are designated according to the level of ionization by adding a Roman numeral to the designation of the chemical element. Neutral atoms are denoted with the Roman numeral I, singly ionized atoms with II, and so on, so that, for example:

Cu II — copper ion with +1 charge, Cu1+

Fe III — iron ion with +2 charge, Fe2+

More detailed designations usually include the line wavelength and may include a multiplet number (for atomic lines) or band designation (for molecular lines). Many spectral lines of atomic hydrogen also have designations within their respective series, such as the Lyman series or Balmer series. Originally all spectral lines were classified into series: the principal series, sharp series, and diffuse series. These series exist across atoms of all elements, and the patterns for all atoms are well-predicted by the Rydberg-Ritz formula. These series were later associated with suborbitals.

توسيع وتحويل الخط

There are a number of effects which control spectral line shape. A spectral line extends over a tiny spectral band with a nonzero range of frequencies, not a single frequency (i.e., a nonzero spectral width). In addition, its center may be shifted from its nominal central wavelength. There are several reasons for this broadening and shift. These reasons may be divided into two general categories – broadening due to local conditions and broadening due to extended conditions. Broadening due to local conditions is due to effects which hold in a small region around the emitting element, usually small enough to assure local thermodynamic equilibrium. Broadening due to extended conditions may result from changes to the spectral distribution of the radiation as it traverses its path to the observer. It also may result from the combining of radiation from a number of regions which are far from each other.

التوسيع نتيجة تأثيرات موضعية

التوسيع طبيعي

The lifetime of excited states results in natural broadening, also known as lifetime broadening. The uncertainty principle relates the lifetime of an excited state (due to spontaneous radiative decay or the Auger process) with the uncertainty of its energy. Some authors use the term "radiative broadening" to refer specifically to the part of natural broadening caused by the spontaneous radiative decay.[5] A short lifetime will have a large energy uncertainty and a broad emission. This broadening effect results in an unshifted Lorentzian profile. The natural broadening can be experimentally altered only to the extent that decay rates can be artificially suppressed or enhanced.[6]

Thermal Doppler broadening

The atoms in a gas which are emitting radiation will have a distribution of velocities. Each photon emitted will be "red"- or "blue"-shifted by the Doppler effect depending on the velocity of the atom relative to the observer. The higher the temperature of the gas, the wider the distribution of velocities in the gas. Since the spectral line is a combination of all of the emitted radiation, the higher the temperature of the gas, the broader the spectral line emitted from that gas. This broadening effect is described by a Gaussian profile and there is no associated shift.

Pressure broadening

The presence of nearby particles will affect the radiation emitted by an individual particle. There are two limiting cases by which this occurs:

  • Impact pressure broadening or collisional broadening: The collision of other particles with the light emitting particle interrupts the emission process, and by shortening the characteristic time for the process, increases the uncertainty in the energy emitted (as occurs in natural broadening).[7] The duration of the collision is much shorter than the lifetime of the emission process. This effect depends on both the density and the temperature of the gas. The broadening effect is described by a Lorentzian profile and there may be an associated shift.
  • Quasistatic pressure broadening: The presence of other particles shifts the energy levels in the emitting particle (see spectral band), thereby altering the frequency of the emitted radiation. The duration of the influence is much longer than the lifetime of the emission process. This effect depends on the density of the gas, but is rather insensitive to temperature. The form of the line profile is determined by the functional form of the perturbing force with respect to distance from the perturbing particle. There may also be a shift in the line center. The general expression for the lineshape resulting from quasistatic pressure broadening is a 4-parameter generalization of the Gaussian distribution known as a stable distribution.[8]

Pressure broadening may also be classified by the nature of the perturbing force as follows:

  • Linear Stark broadening occurs via the linear Stark effect, which results from the interaction of an emitter with an electric field of a charged particle at a distance , causing a shift in energy that is linear in the field strength.
  • Resonance broadening occurs when the perturbing particle is of the same type as the emitting particle, which introduces the possibility of an energy exchange process.
  • Quadratic Stark broadening occurs via the quadratic Stark effect, which results from the interaction of an emitter with an electric field, causing a shift in energy that is quadratic in the field strength.
  • Van der Waals broadening occurs when the emitting particle is being perturbed by Van der Waals forces. For the quasistatic case, a Van der Waals profile[note 1] is often useful in describing the profile. The energy shift as a function of distance between the interacting particles is given in the wings by e.g. the Lennard-Jones potential.

Inhomogeneous broadening

Inhomogeneous broadening is a general term for broadening because some emitting particles are in a different local environment from others, and therefore emit at a different frequency. This term is used especially for solids, where surfaces, grain boundaries, and stoichiometry variations can create a variety of local environments for a given atom to occupy. In liquids, the effects of inhomogeneous broadening is sometimes reduced by a process called motional narrowing.

Broadening due to non-local effects

Certain types of broadening are the result of conditions over a large region of space rather than simply upon conditions that are local to the emitting particle.

Opacity broadening

Opacity broadening is an example of a non-local broadening mechanism. Electromagnetic radiation emitted at a particular point in space can be reabsorbed as it travels through space. This absorption depends on wavelength. The line is broadened because the photons at the line center have a greater reabsorption probability than the photons at the line wings. Indeed, the reabsorption near the line center may be so great as to cause a self reversal in which the intensity at the center of the line is less than in the wings. This process is also sometimes called self-absorption.

Macroscopic Doppler broadening

Radiation emitted by a moving source is subject to Doppler shift due to a finite line-of-sight velocity projection. If different parts of the emitting body have different velocities (along the line of sight), the resulting line will be broadened, with the line width proportional to the width of the velocity distribution. For example, radiation emitted from a distant rotating body, such as a star, will be broadened due to the line-of-sight variations in velocity on opposite sides of the star (this effect usually referred to as rotational broadening). The greater the rate of rotation, the broader the line. Another example is an imploding plasma shell in a Z-pinch.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combined effects

Each of these mechanisms can act in isolation or in combination with others. Assuming each effect is independent, the observed line profile is a convolution of the line profiles of each mechanism. For example, a combination of the thermal Doppler broadening and the impact pressure broadening yields a Voigt profile.

However, the different line broadening mechanisms are not always independent. For example, the collisional effects and the motional Doppler shifts can act in a coherent manner, resulting under some conditions even in a collisional narrowing, known as the Dicke effect.

الخطوط الطيفية للعناصر الكيميائية

الخطوط الطيفية للعناصر الكيميائية
العنصر Z الرمز الخطوط الطيفية
H Hydrogen spectrum visible.png
He Helium spectrum visible.png
Li Lithium spectrum visible.png
Be Beryllium spectrum visible.png
B Boron spectrum visible.png
C Carbon spectrum visible.png
N Nitrogen spectrum visible.png
O Oxygen spectrum visible.png
F Fluorine spectrum visible.png
Ne Neon spectrum visible.png
Na Sodium spectrum visible.png
Mg Magnesium spectrum visible.png
Al Aluminium spectrum visible.png
Si Silicon spectrum visible.png
P Phosphorus spectrum visible.png
S Sulfur spectrum visible.png
Cl Chlorine spectrum visible.png
Ar Argon spectrum visible.png
K Potassium spectrum visible.png
Ca Calcium spectrum visible.png
Sc Scandium spectrum visible.png
Ti Titanium spectrum visible.png
V Vanadium spectrum visible.png
Cr Chromium spectrum visible.png
Mn Manganese spectrum visible.png
Fe Iron spectrum visible.png
Co Cobalt spectrum visible.png
Ni Nickel spectrum visible.png
Cu Copper spectrum visible.png
Zn Zinc spectrum visible.png
Ga Gallium spectrum visible.png
Ge Germanium spectrum visible.png
As Arsenic spectrum visible.png
Se Selenium spectrum visible.png
Br Bromine spectrum visible.png
Kr Krypton spectrum visible.png
Rb Rubidium spectrum visible.png
Sr Strontium spectrum visible.png
Y Yttrium spectrum visible.png
Zr Zirconium spectrum visible.png
Nb Niobium spectrum visible.png
Mo Molybdenum spectrum visible.png
Tc Technetium spectrum visible.png
Ru Ruthenium spectrum visible.png
Rh Rhodium spectrum visible.png
Pd Palladium spectrum visible.png
Ag Silver spectrum visible.png
Cd Cadmium spectrum visible.png
In Indium spectrum visible.png
Sn Tin spectrum visible.png
Sb Antimony spectrum visible.png
Te Tellurium spectrum visible.png
I Iodine spectrum visible.png
Xe Xenon spectrum visible.png
Cs Caesium spectrum visible.png
Ba Barium spectrum visible.png
La Lanthanum spectrum visible.png
Ce Cerium spectrum visible.png
Pr Praseodymium spectrum visible.png
Nd Neodymium spectrum visible.png
Pm Promethium spectrum visible.png
Sm Samarium spectrum visible.png
Eu Europium spectrum visible.png
Gd Gadolinium spectrum visible.png
Tb Terbium spectrum visible.png
Dy Dysprosium spectrum visible.png
Ho Holmium spectrum visible.png
Er Erbium spectrum visible.png
Tm Thulium spectrum visible.png
Yb Ytterbium spectrum visible.png
Lu Lutetium spectrum visible.png
Hf Hafnium spectrum visible.png
Ta Tantalum spectrum visible.png
W Tungsten spectrum visible.png
Re Rhenium spectrum visible.png
Os Osmium spectrum visible.png
Ir Iridium spectrum visible.png
Pt Platinum spectrum visible.png
Au Gold spectrum visible.png
Hg Mercury spectrum visible.png
Tl Thallium spectrum visible.png
Pb Lead spectrum visible.png
Bi Bismuth spectrum visible.png
Po Polonium spectrum visible.png
Rn Radon spectrum visible.png
Ra Radium spectrum visible.png
Ac Actinium spectrum visible.png
Th Thorium spectrum visible.png
Pa Protactinium spectrum visible.png
U Uranium spectrum visible.png
Np Neptunium spectrum visible.png
Pu Plutonium spectrum visible.png
Am Americium spectrum visible.png
Cm Curium spectrum visible.png
Bk Berkelium spectrum visible.png
Cf Californium spectrum visible.png
Es Einsteinium spectrum visible.png


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

انظر أيضاً

الهوامش

  1. ^ "Van der Waals profile" appears as lowercase in almost all sources, such as: Statistical mechanics of the liquid surface by Clive Anthony Croxton, 1980, A Wiley-Interscience publication, ISBN 0-471-27663-4, ISBN 978-0-471-27663-0; and in Journal of technical physics, Volume 36, by Instytut Podstawowych Problemów Techniki (Polska Akademia Nauk), publisher: Państwowe Wydawn. Naukowe., 1995,

المصادر

  1. ^ Gabrielse, Gerald; H. Dehmelt (1985). "Observation of Inhibited Spontaneous Emission". Physical Review Letters. 55 (1): 67–70. Bibcode:1985PhRvL..55...67G. doi:10.1103/PhysRevLett.55.67. PMID 10031682.
  2. ^ Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; Campargue, A.; Chance, K.; Cohen, E.A.; Coudert, L.H.; Devi, V.M.; Drouin, B.J.; Fayt, A.; Flaud, J.-M.; Gamache, R.R.; Harrison, J.J.; Hartmann, J.-M.; Hill, C.; Hodges, J.T.; Jacquemart, D.; Jolly, A.; Lamouroux, J.; Le Roy, R.J.; Li, G.; Long, D.A.; et al. (2013). "The HITRAN2012 molecular spectroscopic database". Journal of Quantitative Spectroscopy and Radiative Transfer. 130: 4–50. Bibcode:2013JQSRT.130....4R. doi:10.1016/j.jqsrt.2013.07.002. ISSN 0022-4073.
  3. ^ Statistical mechanics of the liquid surfaceby Clive Anthony Croxton, 1980, A Wiley-Interscience publication, ISBN 0-471-27663-4, ISBN 978-0-471-27663-0; and in Journal of technical physics, Volume 36, by Instytut Podstawowych Problemów Techniki (Polska Akademia Nauk), publisher: Państwowe Wydawn. Naukowe., 1995, Archived 2016-12-03 at the Wayback Machine
  4. ^ Einstein, Albert (1905). "On a Heuristic Viewpoint Concerning the Production and Transformation of Light".
  5. ^ Krainov, Vladimir; Reiss, Howard; Smirnov, Boris (1997). Radiative Processes in Atomic Physics. Wiley. doi:10.1002/3527605606. ISBN 978-0-471-12533-4.
  6. ^ For example, in the following article, decay was suppressed via a microwave cavity, thus reducing the natural broadening: Gabrielse, Gerald; H. Dehmelt (1985). "Observation of Inhibited Spontaneous Emission". Physical Review Letters. 55 (1): 67–70. Bibcode:1985PhRvL..55...67G. doi:10.1103/PhysRevLett.55.67. PMID 10031682.
  7. ^ "Collisional Broadening". Fas.harvard.edu. Archived from the original on 2015-09-24. Retrieved 2015-09-24.
  8. ^ Peach, G. (1981). "Theory of the pressure broadening and shift of spectral lines". Advances in Physics. 30 (3): 367–474. Bibcode:1981AdPhy..30..367P. doi:10.1080/00018738100101467. Archived from the original on 2013-01-14. Retrieved 2005-12-09.

قراءات إضافية