نصف القطر الذري

Diagram of a helium atom, showing the electron probability density as shades of gray.

نصف القطر الذري Atomic radius هو المسافة بين نواة الذرة إلى مدار الإلكترون الخارجي الثابت والموجود في حالة اتزان. وتقاس بوحدة بيكو متر أو أنجستروم.

كما يطلق نصف القطر التساهمي على نصف القطر الذري ( عند تكون روابطة تساهمية )، ونصف القطر اللافلزي في حالة العناصر اللافلزية، نصف القطر الفلزي في حالة العناصر الفلزية. وتقنيا فإن نصف القطر الذري هو نصف مسافة الاتزان بين ذرتين متجاورتين، ( واللتان ترتبطان معا برابطة تساهمية، أو يتواجدا بقرب بعضهما البعض في شكلل شبكة بللورية لأي عنصر.

ويكون نصف القطر التساهمي نصف المسافة بين نواتي نفس الذرات المترابطة مع بعضها البعض. ويكون نصف القطر التساهمي للعناصر التي لا ترتبط ذراتها مع بعضها البعض يمكن تقديرها بالربط بينها وبين نصف القطر في الجزيئات المختلفة. ويمكن تحديد نصف القطر الفلزي على أنه نصف المسافة بين أقرب ذرتين متجاورتين في الشكل البللوري.

ويزيد نصف القطر الذري في الجدول الدوري بإضافة أغفلة إلكترونية، ويقل من اليمين إلى اليسار بزيادة شحنة النواة ( أو عدد البروتونات ).


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Empirically measured atomic radius

The following table shows empirically measured covalent radii for the elements, as published by J. C. Slater in 1964.[1] The values are in picometers (pm or 1×10−12 m), with an accuracy of about 5 pm. The shade of the box ranges from red to yellow as the radius increases; gray indicates lack of data.

Group
(column)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period
(row)
1 H
25
He
 
2 Li
145
Be
105
B
85
C
70
N
65
O
60
F
50
Ne
 
3 Na
180
Mg
150
Al
125
Si
110
P
100
S
100
Cl
100
Ar
 
4 K
220
Ca
180
Sc
160
Ti
140
V
135
Cr
140
Mn
140
Fe
140
Co
135
Ni
135
Cu
135
Zn
135
Ga
130
Ge
125
As
115
Se
115
Br
115
Kr
 
5 Rb
235
Sr
200
Y
180
Zr
155
Nb
145
Mo
145
Tc
135
Ru
130
Rh
135
Pd
140
Ag
160
Cd
155
In
155
Sn
145
Sb
145
Te
140
I
140
Xe
 
6 Cs
260
Ba
215
*
 
Lu
175
Hf
155
Ta
145
W
135
Re
135
Os
130
Ir
135
Pt
135
Au
135
Hg
150
Tl
190
Pb
180
Bi
160
Po
190
At
 
Rn
 
7 Fr
 
Ra
215
**
 
Lr
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 
*
 
La
195
Ce
185
Pr
185
Nd
185
Pm
185
Sm
185
Eu
185
Gd
180
Tb
175
Dy
175
Ho
175
Er
175
Tm
175
Yb
175
**
 
Ac
195
Th
180
Pa
180
U
175
Np
175
Pu
175
Am
175
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 


Explanation of the general trends

A graph comparing the atomic radius of elements with atomic numbers 1–100. Accuracy of ±5 pm.


d-block contraction

The d-block contraction is less pronounced than the lanthanide contraction but arises from a similar cause. In this case, it is the poor shielding capacity of the 3d-electrons which affects the atomic radii and chemistries of the elements immediately following the first row of the transition metals, from gallium (Z = 31) to bromine (Z = 35).[2]

Calculated atomic radius

The following table shows atomic radii computed from theoretical models, as published by Enrico Clementi and others in 1967.[3] The values are in picometres (pm).

Group
(column)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period
(row)
1 H
53
He
31
2 Li
167
Be
112
B
87
C
67
N
56
O
48
F
42
Ne
38
3 Na
190
Mg
145
Al
118
Si
111
P
98
S
88
Cl
79
Ar
71
4 K
243
Ca
194
Sc
184
Ti
176
V
171
Cr
166
Mn
161
Fe
156
Co
152
Ni
149
Cu
145
Zn
142
Ga
136
Ge
125
As
114
Se
103
Br
94
Kr
88
5 Rb
265
Sr
219
Y
212
Zr
206
Nb
198
Mo
190
Tc
183
Ru
178
Rh
173
Pd
169
Ag
165
Cd
161
In
156
Sn
145
Sb
133
Te
123
I
115
Xe
108
6 Cs
298
Ba
253
*
 
Lu
217
Hf
208
Ta
200
W
193
Re
188
Os
185
Ir
180
Pt
177
Au
174
Hg
171
Tl
156
Pb
154
Bi
143
Po
135
At
127
Rn
120
7 Fr
 
Ra
 
**
 
Lr
 
Rf
 
Db
 
Sg
 
Bh
 
Hs
 
Mt
 
Ds
 
Rg
 
Cn
 
Nh
 
Fl
 
Mc
 
Lv
 
Ts
 
Og
 
*
 
La
226
Ce
210
Pr
247
Nd
206
Pm
205
Sm
238
Eu
231
Gd
233
Tb
225
Dy
228
Ho
226
Er
226
Tm
222
Yb
222
**
 
Ac
 
Th
 
Pa
 
U
 
Np
 
Pu
 
Am
 
Cm
 
Bk
 
Cf
 
Es
 
Fm
 
Md
 
No
 

شاهد أيضا

ملاحظات

  • Difference between empirical and calculated data: Empirical data means "originating in or based on observation or experience" or "relying on experience or observation alone often without due regard for system and theory data".[4] In other words, the data are measured through physical observation, and vetted by other experiments generating similar results. Calculated data, on the other hand, are derived from theoretical models. Such predictions are especially useful for elements whose radii cannot be measured experimentally (e.g. those that have not been discovered, or that have too short of a half-life).

المراجع

  1. ^ Slater, J. C. (1964). "Atomic Radii in Crystals". Journal of Chemical Physics. 41 (10): 3199–3205. Bibcode:1964JChPh..41.3199S. doi:10.1063/1.1725697.
  2. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة Jolly_contract
  3. ^ Clementi, E.; Raimond, D. L.; Reinhardt, W. P. (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084.
  4. ^ "Definition of EMPIRICAL".