ميتاماتريال
الميتاماتريال Metamaterials، هي مواد إصطناعية هُندست لتكتسب خصائص قد لا تتوافر في الطبيعة. artificial materials engineered to have properties that may not be found in nature. They are assemblies of multiple individual elements fashioned from conventional microscopic materials such as metals or plastics, but the materials are usually arranged in periodic patterns. Metamaterials gain their properties not from their composition, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect the waves of light or sound in an unconventional manner, creating material properties which are unachievable with conventional materials. These metamaterials achieve desired effects by incorporating structural elements of sub-wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves they affect.[3][4][5]
The primary research in metamaterials investigates materials with negative refractive index.[6][7][8] Negative refractive index materials appear to permit the creation of superlenses which can have a spatial resolution below that of the wavelength. In other work, a form of 'invisibility' has been demonstrated at least over a narrow wave band with gradient-index materials. Although the first metamaterials were electromagnetic,[6] acoustic and seismic metamaterials are also areas of active research.[9][10]
Potential applications of metamaterials are diverse and include remote aerospace applications, sensor detection and infrastructure monitoring, smart solar power management, public safety, radomes, high-frequency battlefield communication and lenses for high-gain antennas, improving ultrasonic sensors, and even shielding structures from earthquakes.[10][11][12][13][14]
The research in metamaterials is interdisciplinary and involves such fields as electrical engineering, electromagnetics, solid state physics, microwave and antennae engineering, optoelectronics, classic optics, material sciences, semiconductor engineering, nanoscience and others.[4]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الميتاماتريال الكهرومغناطيسية
كهرومغناطيسية | ||||||||||
كهرباء • مغناطيسية
| ||||||||||
مؤشر الإنكسار السلبي
تصنيف الميتاماتريال الكهرومغناطيسية
مواد المؤشر السلبي
Single negative metamaterials
Electromagnetic bandgap metamaterials
الوسط الإيجابي المزودج
Bi-isotropic and bianisotropic metamaterials
Chiral metamaterials
تاريخ الميتاماتيريال
يبدأ تاريخ الميتاماتيريال عقب تطوير العوازل الصناعية في هندسة الميكروويف لأنها وضعت بعد تاريخ الرادار في الحرب العالمية الثانية . وبالإضافة إلى ذلك، هناك استكشافات عديدة من المواد الاصطناعية لمعالجة الموجات الكهرومغناطيسية في نهاية القرن 19th. وبالتالي، فإن التاريخ يتعلق بما وارء ذلك هو في جوهره تاريخ تطوير أنواع معينة من المواد المصنعة، التي تتفاعل في تردد الراديو، الميكروويف، وفيما بعد الترددات الضوئية .[15][3]
تطبيقات الميتاماتريال
ميتاماتريال تراهرتز
الميتاماتريال الضوئية
Tunable metamaterials
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الميتاماتريال الپلازمية
هوائيات الميتاماتريال
FSS based metamaterials
Nonlinear metamaterials
Metamaterial absorber
Superlens
أجهزة الحجب
الميتاماتريال المرنة
Acoustic metamaterials
الميتاماتريال السيزمية
مقالات متعلقة
العوازل الصناعية
Split-ring resonators
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الإنكسار السلبي
نماذج نظرية
معاهد بحثية لأبحاث الميتاماتريال
انظر أيضاً
- جرائد أكاديمية
- كتب
المصادر
- ^ Shelby, R. A. (2001). "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial" (PDF). Applied Physics Letters. 78 (4): 489. Bibcode:2001ApPhL..78..489S. doi:10.1063/1.1343489.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)[dead link] - ^ Smith, D. R.; Padilla, WJ; Vier, DC; Nemat-Nasser, SC; Schultz, S (2000). "Composite Medium with Simultaneously Negative Permeability and Permittivity" (PDF). Physical Review Letters. 84 (18): 4184–7. Bibcode:2000PhRvL..84.4184S. doi:10.1103/PhysRevLett.84.4184. PMID 10990641.
- ^ أ ب Engheta, Nader (2006-06). [[Metamaterials: Physics and Engineering Explorations]]. Wiley & Sons. pp. xv, 3–30, 37, 143–150, 215–234, 240–256. ISBN 978-0-471-76102-0.
{{cite book}}
: Check date values in:|date=
(help); URL–wikilink conflict (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ أ ب خطأ استشهاد: وسم
<ref>
غير صحيح؛ لا نص تم توفيره للمراجع المسماةmetamaterialplasmonics1
- ^ Smith, David R. (2006-06-10). "What are Electromagnetic Metamaterials?". Novel Electromagnetic Materials. The research group of D.R. Smith. Retrieved 2009-08-19.
- ^ أ ب
Shelby, R. A.; Smith, DR; Schultz, S (2001). "Experimental Verification of a Negative Index of Refraction". Science. 292 (5514): 77. Bibcode:2001Sci...292...77S. doi:10.1126/science.1058847. PMID 11292865.
{{cite journal}}
: More than one of|first1=
and|first=
specified (help); More than one of|last1=
and|last=
specified (help); More than one of|pages=
and|page=
specified (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Pendry, John B. (2004). "Negative Refraction" (PDF). Contemporary Physics. Princeton University Press. 45 (3): 191–202. Bibcode:2004ConPh..45..191P. doi:10.1080/00107510410001667434. ISBN 0-691-12347-0. Retrieved 2009-08-26.
- ^ Veselago, V. G. (1968). "The electrodynamics of substances with simultaneously negative values of [permittivity] and [permeability]". Soviet Physics Uspekhi. 10 (4): 509–514. Bibcode:1968SvPhU..10..509V. doi:10.1070/PU1968v010n04ABEH003699.
- ^ Guenneau, Sébastien (2007). "Acoustic metamaterials for sound focusing and confinement". New Journal of Physics (free download pdf). 9 (399): 1367–2630. Bibcode:2007NJPh....9..399G. doi:10.1088/1367-2630/9/11/399.
{{cite journal}}
:|format=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ أ ب
Brun, M. (2009-02-09). "Achieving control of in-plane elastic waves". Appl. Phys. Lett. 94 (61903): 1–7. arXiv:0812.0912. Bibcode:2009ApPhL..94f1903B. doi:10.1063/1.3068491.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Smith, David R; Research group (2005-01-16). "Novel Electromagnetic Materials program". Retrieved 2009-08-17.
- ^
Rainsford, Tamath J. (9 March 2005). "T-ray sensing applications: review of global developments". Proc. SPIE. Conference Location: Sydney, Australia 2004-12-13: The International Society for Optical Engineering. 5649 Smart Structures, Devices, and Systems II (Poster session): 826. doi:10.1117/12.607746.
{{cite journal}}
: More than one of|pages=
and|page=
specified (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: location (link) - ^
Cotton, Micheal G. (2003-12). "Applied Electromagnetics" (PDF). 2003 Technical Progress Report (NITA – ITS). Boulder, CO, USA: NITA – Institute for Telecommunication Sciences. Telecommunications Theory (3): 4–5. Retrieved 2009-09-14.
{{cite journal}}
: Check date values in:|date=
(help) - ^ خطأ استشهاد: وسم
<ref>
غير صحيح؛ لا نص تم توفيره للمراجع المسماةradiation-properties
- ^ خطأ استشهاد: وسم
<ref>
غير صحيح؛ لا نص تم توفيره للمراجع المسماةPekka-Ikonen
وصلات خارجية
- صفحات تعليمية عن الميتاماتريال:
- Nanophotonics group. Prof. Min Qiu. Royal Institute of Technology (KTH). Sweden.
- ETA research group. Prof. Christophe Caloz. Polytechnique Montréal.
- Metamaterials. Electromagnetics Group. George Eleftheriades. University of Toronto.
- The Engheta Group. Nader Engheta. University of Pennsylvania.
- Electromagnetic Metamaterials. Fraunhofer FHR. Germany.
- Antennas Research Group. Prof. Yang Hao. University of London.
- Inano Group. Prof. M. Saif Islam. UC Davis.
- Mediums with Negative Phase Velocity. Prof. Akhlesh Lakhtakia. Penn State University.
- Condensed Matter Theory Group. Sir John Pendry. Imperial College. London.
- Computational Nano Materials Group Viktor Podolskiy (Assoc. Prof.). UMass Lowell.
- Shvets Research Group, University of Texas at Austin – US
- David Smith's research group — Duke University — US
- Costas Soukoulis at IESL, Greece — Photonic, Phononic & MetaMaterials Group
- Srinivas Sridhar's Group Northeastern University
- Irina Veretennicoff's research group, Vrije Universiteit Brussel — Belgium
- Christophe Craeye's research group – Belgium
- Martin Wegener's Metamaterials group Universität Karlsruhe (TH) — Germany
- Georgios Zouganelis's Metamaterials Group – NIT — Japan]
- Xiang Zhang's group – UC Berkeley – US
- Sergei Tretyakov's group – Helsinki University of Technology, Finland
- Gengkai Hu's group – Beijing Institute of Technology, (PRC)
- Institute of Applied Phyisical Problems – BSU – Belarus]
- Centre for Photonic Metamaterials, University of Southhampton
- بوابات على الإنترنت:
- Scholar Google profile on metamaterials
- MetaMaterials.net Web Group
- Center for Metamaterials and Integrated Plasmonics, Duke University
- Journal "Metamaterials" published by Elsevier (homepage)
- Online articles: "Metamaterials" in ScienceDirect
- RSS feed for Metamaterials articles published in Physical Review Journals
- Virtual Institute for Artificial Electromagnetic Materials and Metamaterials ("METAMORPHOSE VI AISBL")
- European Network of Excellence "METAMORPHOSE" on Metamaterials
- SensorMetrix Formed with a specific directive to exploit the recent advances in electromagnetic metamaterials
- Metamaterials collection on IOPscience (IOP Publishing)
- مقالات وعروض تقديمية إضافية:
تعريفات قاموسية في ويكاموس
كتب من معرفة الكتب
اقتباسات من معرفة الاقتباس
نصوص مصدرية من معرفة المصادر
صور و ملفات صوتية من كومونز
أخبار من معرفة الأخبار.
- Dr. Sebastien Guenneau. Research on Metamaterials and Photonic Crystal Fibres
- UWB Tunable Delay System, Prof Christophe Caloz, Ecole Polytechnique, Montreal
- What are Metamaterials ? An index page by Dr. Stefan Linden and Prof. Dr. Martin Wegener
- Raytracing Metamaterials (demonstrations)
- Multifunctionality.
- Cloaking devices, nihility bandgap, LF magnetic enhancement, perfect radome NIT Japan
- Left-Handed Flat Lens HFSS Tutorial Electromagnetism Tutorial
- Journal of Optics A, February 2005 Special issue on Metamaterials
- Experimental Verification of a Negative Index of Refraction
- How To Make an Object Invisible
- Metamaterials hold key to cloak of invisibility
- CS1 errors: unsupported parameter
- Articles with dead external links from March 2010
- CS1 errors: URL–wikilink conflict
- CS1 errors: redundant parameter
- CS1 errors: format without URL
- CS1 maint: location
- Articles with hatnote templates targeting a nonexistent page
- ميكانيكا الاستمرارية
- علم الصوت
- كهرومغناطيسية
- عبارات يونانية
- ميتاماتريال
- المجهر
- مواد نانوية
- تكنولوجيات بازغة