مبرهنة فيثاغورس
النوع | Theorem |
---|---|
المجال | Euclidean geometry |
العبارة | The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c). |
العبارة الرمزية | |
تعميمات | |
عواقب |
الهندسة |
---|
التاريخ (خط زمني) |
علماء الهندسة |
مبرهنة فيثاغورس هي مبرهنة في الهندسة الإقليدية، تقول أنه في أي مثلث قائم الزاوية يكون مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة يساوي مربع طول الوتر. سميت هذه المبرهنة على العالم فيثاغورس الذي كان رياضيا، و فيلسوفا، و عالم فلك في اليونان القديمة.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
المبرهنة
مبرهنة فيثاغورس المباشرة
وهي الشكل الأكثر شهرة لمبرهنة فيثاغورس:
« في مثلث قائم الزاوية، مربع طول الوتر يساوي مجموع مربعي طولي الضلعين المحاذيين للزاوية القائمة. »
في مثلث ABC قائم الزاوية في C، أي أن [AB] هو الوتر، نضع AB=c و AC=b و BC=a. لدينا:
أو
تمكن مبرهنة فيثاغورس من حساب طول أحد أضلاع مثلث قائم الزاوية بمعرفة طولي الضلعين الآخرين. مثلا: إذا كان b=3 و a=4 فإن
ومنه .
مثلوث ثلاثة أعداد صحيحة تمثل أطوال أضلاع مثلث قائم الزاوية، مثل (5 ،4 ،3)، يسمى مثلوث فيثاغورس.
مبرهنة فيثاغورس العكسية
نص مبرهنة فيثاغورس العكسية (العبارة 47 من الجزء الأول من كتاب العناصر لإقليدس):
« في مثلث، إذا كان مربع طول أطول ضلع يساوي مجموع مربعي طولي الضلعين الآخرين، فإن هذا المثلث قائم الزاوية. الزاوية القائمة هي الزاوية المقابلة لأطول ضلع، و الضلع الأطول هو الوتر. »
مبرهنة فيثاغورس هي خاصية مميزة للمثلث القائم الزاوية.
بتعبير آخر:
« في مثلث ABC، إذا كان AC²+BC²=AB² فإن هذا المثلث قائم الزاوية في C .»
تاريخ المبرهنة
عرفت خاصية فيثاغورس في العصور القديمة، والدلائل على ذلك ما زالت موجودة إلى الآن. يكفي مثلا أن نلاحظ الحبل ذا ثلاث عشرة عقدة الذي كان المسّاحون المصريون يستعملونه والذي نجد له صورا في عدة تصاوير للأعمال الزراعية. يسمح هذا الحبل، علاوة على قياس المسافات، بإنشاء زوايا قائمة دون الحاجة إلى الكوس، إذ تسمح العقد الثلاث عشرة (والمسافات الاثنتي عشرة الفاصلة بين العقد) من إنشاء مثلث أبعاده (5 ،4 ،3)، مثلث يتضح أنه قائم الزاوية. ظل هذا الحبل أداة هندسية طيلةالعصور الوسطى.
أقدم تمثيل لمثلوثات فيثاغورس (مثلث قائم الزاوية وأطوال أضلاعه أعداد صحيحة طبيعية) نجده في الميغاليثات (2500 سنة قبل الميلاد). كما أظهرت آثار البابليين (لوحة Plimpton، حوالي سنة 1800 قبل الميلاد) أنه قبل ظهور فيثاغورس بأكثر من 1000 سنة، عرف المهندسون وجود مثلوثات فيثاغورس.
لكن بين اكتشاف الخاصية «نلاحظ أن بعض المثلثات القائمة الزاوية تحقق هذه الخاصية»، تعميمها «يبدو أن كل المثلثات القائمة الزاوية تحقق هذه الخاصية» وإثباتها «كل المثلثات القائمة الزاوية (فقط) في المستوى الإقليدي تحقق هذه الخاصية» عدة أجيال.
ندرة الدلائل التاريخية تجعلنا غير قادرين على نسب المبرهنة إلى فيثاغورس بشكل قاطع، مع أننا على يقين بأنه صاحبها. أول برهان مكتوب نجده في كتاب العناصر لإقليدس بالصيغة التالية:
« في المثلثات القائمة الزاوية، مربع طول الضلع المقابل للزاوية القائمة يساوي مجموع مربعي طولي الضلعين الآخرين. »
مع صيغتها العكسية: « إذا كان مربع طول ضلع في مثلث يساوي مجموع مربعي طولي الضلعين الآخرين، فإن الزاوية المحصورة بين هذين الضلعين قائمة. »
و مع ذلك، فتعليقات Proclus على كتاب العناصر لإقليدس (حوالي 400 سنة بعد الميلاد) تشير إلى أن إقليدس لم يقم سوى بإعادة تدوين برهان قديم نسبه Proclus إلى فيثاغورس.
إذن، يمكننا أن نؤرخ البرهان على هذه الخاصية ما بين القرن الثالث والقرن السادس قبل الميلاد. يحكى أنه في تلك الفترة اكتشفت الأعداد اللاجذرية. بالفعل، يمكن بسهولة إنشاء مثلث قائم الزاوية و متساوي الساقين طول أحدهما 1، فيكون مربع طول الوتر هو 2. برهان بسيط أيام فيثاغورس يثبت أن العدد 2 ليس مربعا لعدد جذري. يقال أن هذا الإكتشاف تم إبقاؤه سرا من طرف المدرسة الفيثاغورسية تحت تهديد بالقتل.
إلى جانب هذه الإكتشافات، يبدو أن هذه المبرهنة عرفت في الصين أيضا. نجد إشارة إلى وجود هذه المبرهنة في واحد من أقدم المؤلفات الصينية في الرياضيات، كتاب Zhoubi suanjing. هذا المؤلف، كتب على الأغلب في Han Dynasty (أعظم الفترات في تاريخ الصين)، (206 قبل الميلاد، 220 سنة بعد الميلاد) يضم التقنيات المستعملة في فترة Zhou Dynasty. (القرن العاشر قبل الميلاد، 256 قبل الميلاد). نجد برهان هذه الخاصية، التي تحمل في الصين اسم مبرهنة جوجو Gougu (القاعدة والإرتفاع)، في كتاب Jiuzhang suanshu (الفصول التسعة في فن الرياضيات، 100 سنة قبل الميلاد، 50 سنة بعده)، برهان مختلف كليا عن برهان إقليدس.
كما نجد في الهند برهانا عدديا للخاصية يعود إلى القرن الثالث قبل الميلاد (برهان بإستعمال أعداد خاصة، لكن يمكن تعميمه بسهولة).
رغم أنها خاصية هندسية، إلا أنها أخذت منحى حسابيا عند البحث عن جميع مثلوثات أعداد صحيحة طبيعية تمثل أطوال أضلاع مثلث قائم الزاوية: أي مثلوثات فيثاغورس. هذا البحث فتح الباب لبحث آخر: البحث عن المثلوثات التي تحقق ، بحث قاد إلى مظنونة فيرما التي تم حلها سنة 1994 على يد الرياضي Andrew Wiles.
توجد في الحقيقة العديد من البراهين على هذه الخاصية، مثل برهان إقليدس، و برهان الصينيين، مرورا ببرهان الهنود، و برهان دا فينشي و حتى برهان الرئيس الأمريكي James Abram Garfield. كما لا يفوتنا ذكر الكاشي الذي عمم هذه المبرهنة على كل المثلثات: مبرهنة الكاشي.
براهين
بلا شك، هذه المبرهنة لديها أكبر عدد معروف من الإثباتات (كما هو الحال بالنسبة لخاصية Quadratic reciprocity). ها هي بعض منها:
برهان إقليدس
قبل البرهنة على خاصية فيثاغورس، يجب إثبات عبارتين. العبارة الأولى التي يجب إثباتها (العبارة 35 من الجزء الأول من كتاب العناصر) هي تساوي مساحتي متوازيي أضلاع لهما نفس القاعدة و نفس الإرتفاع:
« متوازيات الأضلاع التي لها قاعدة مشتركة، و محصورة بين نفس المستقيمين المتوازيين، لها نفس المساحة. »
لنعتبر متوازيي الأضلاع ABCD و BCFE، لديهما قاعدة مشتركة [BC]، و محصوران بين المتوازيين (BC) و (AF)، لاحظ أن AD=BC (لأنهما قاعدتا متوازي الأضلاع ABCD)، و BC=EF (لأنهما قاعدتا متوازي الأضلاع BCFE)، و بالتالي AD=EF.
توجد ثلاثة حالات فقط (مبينة في الشكل جانبه) لموضع النقطة E بالنسبة إلى D : يمكن أن توجد E على يسار D، منطبقة على D أو على يمين D. سندرس كل حالة:
1. إذا كانت E على يسار D فإن [ED] مشتركة بين كل من [AD] و [EF]، و منه نستطيع التحقق من أن المسافتين AD و EF متساويتين. لاحظ أن الضلعين [AB] و [DC] متقايسان (لأنهما قاعدتان متقابلتان في متوازي الأضلاع ABCD)، و النقط D، E، A و F مستقيمية، الزاويتان و متقايستان. كنتيجة لهذا فالمثلثان BAE و CDF متقايسان، لأن لهما ضلعان متقايسان و الزاويتان المحصورتان متقايستان. إذن، متوازيي الأضلاع ABCD و CBEF ليسا سوى ترتيبين مختلفين من شبه المنحرف BEDC و المثلث BAE (أو CDF).
2. إذا كانت E منطبقة على D، سنجد بطريقة مشابهة أن المثلثين BAE و CDF متقايسان، و أنه من الممكن الحصول على متوازيي الأضلاع ABCD و BCFE بإضافة المثلث BAE (أو CDF) إلى المثلث المشترك BCD.
3. إذا كانت E على يمين D، لدينا AD=EF، و بإضافة DE لكل منهما نجد أن AE=DF. و بطريقة مشابهة لتلك التي إستعملناها في 1 و 2، يمكن أن نبين أن المثلثين BAE و CDF، و أيضا شبهي المنحرف BADG و CGEF، متقايسان. إذن من الواضح أنه يمكن الحصول على متوازيي الأضلاع ABCD و CBEF عن طريق إضافة المثلث المشترك BCG إلى شبه المنحرف BADG (أو CGEF).
استبدال متوازي أضلاع بمتوازي أضلاع آخر له نفس القاعدة و الإرتفاع يعرف في الرياضيات بإسم القص. هذا الأخير مهم جدا في إثبات العبارة التالية:
« إذا كان لمتوازي أضلاع و لمثلث نفس القاعدة، و محصورين بين مستقيمين متوازيين، فإن مساحة متوازي الأضلاع هي ضعف مساحة المثلث. »
لنعتبر متوازي أضلاع ABCD، و لتكن E نقطة من نصف المستقيم (AD] و لا تنتمي إلى القطعة [AD]. نريد إثبات أن مساحة ABCD هي ضعف مساحة BEC. بعد رسم القطر [AC]، نلاحظ أن مساحة ABCD هي ضعف مساحة ABC. و لدينا مساحة ABC تساوي مساحة BEC (لأن لهم نفس القاعدة). إذن ضعف مساحة BEC هي ضعف مساحة ABC، أي ABCD. . و منه مساحة ABCD هي ضعف مساحة BEC المثلث.
نستطيع الآن متابعة البرهان:
نعتبر مثلثا ABC قائم الزاوية في A. لتكن ABFG ،ACIH و BCED مربعات الأضلاع AB ،AC و BC على التوالي. لتكن J نقطة تقاطع (BC) و (AK). نريد إثبات أن مساحة BCED تساوي مجموع مساحتي ABFG و ACIH. يمكننا هذا عن طريق إثبات أن مساحة المربع ABFG تساوي مساحة المستطيل BJKD، و أن مساحة المربع ACIH تساوي مساحة المستطيل CEKJ.
لإثبات المتساوية الأولى، يمكن أن نلاحظ أن المسافتين FB و BC تساويان AB و BD على التوالي. لأن الزاويتان و متقايستان، و الزاويتان (لاحظ أن ) و (لاحظ أن ) متقايستان. كنتيجة، لدينا المثلثان FBC و ABD متقايسان. لاحظ أيضا أنه حسب العبارة XLI، مساحة المربع ABFG هي ضعف مساحة المثلث FBC و أن مساحة المستطيل BJKD هي ضعف مساحة المثلث ABD. بما أن المثلثين ABD و FBC متقايسان، فإن مساحة ABFG تساوي مساحة BJKD.
نحصل على المتساوية الثانية بطريقة مشابهة: بملاحظة أن IC و CB يساويان AC و CE على التوالي، و أن الزاوية تقايس الزاوية ، نحصل على أن المثلثين ICB و ACE متقايسان. و علما أن مساحة المربع ACIH هي ضعف مساحة المثلث ICB و أن مساحة المستطيل CEKJ هي ضعف مساحة ACE، و بما أن المثلثين ICB و ACE متقايسان، فإن مساحة ACIH تساوي مساحة CEKJ.
و بالتالي، مساحة BCED تساوي مساحة مجموع مساحتي BJKD و CEKJ، أي مجموع مساحتي ABFG و ACIH.
و تكون مبرهنة فيثاغورس حالة خاصة لمبرهنة كليرو.
برهان جوجو
تمت إعادة صياغة مبرهنة جوجو Gougu إنطلاقا من تعليقات و ملاحظات الرياضي الصيني Liu Hui (القرن الثالث بعد الميلاد) على كتاب « الفصول التسعة في فن الرياضيات » (206 قبل الميلاد، 220 بعده) و على كتاب Zhoubi Suanjian « ظل الدوائر، كتاب في Calculus » (كتاب في علم الفلك).
هذا البرهان يعتمد على مبدأ لعبة اللغز Puzzle: مساحتان متساويتان بعد تقطيع و تركيب. يذكر أن إقليدس استعمل نفس المبدأ (القص) تقريبا.
في الشكل جانبه، المثلث القائم الزاوية مرسوم بلون غامق، مربع أطول ضلع من ضلعي الزاوية القائمة رسم خارج المثلث، بينما نقوم بالعكس بالنسبة للضلعين الآخرين.
المثلث الأحمر يقايس المثلث البدئي. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأصفر يساوي طول أصغر ضلع في المثلث البدئي، و زوايا هذين المثلثين متقايسة. طول أطول ضلع من ضلعي الزاوية القائمة في المثلث الأزرق يساوي فرق طولي ضلعي الزاوية القائمة للمثلث البدئي و زواياهما متقايسة أيضا.
بإستعمال الجداء السلمي
ليكن ABC مثلثا قائم الزاوية في A
بما أن ABC قائم الزاوية في A فإن
و منه
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
برهان حديث
لنعتبر مثلثا قائم الزاوية حيث قياسات أضلاعه هي b ،a و c. نقوم بنسخ المثلث ثلاث مرات بحيث يشكل كل ضلع طوله a مستقيما مع ضلع طوله b لمثلث آخر. نحصل في الأخير على مربع طول ضلعه a+b، كما في الصورة.
لنحسب مساحة المربع المحدد بالأضلاع ذات الطول c. بالطبع المساحة هي c²، و تساوي أيضا فرق مساحة المربع الكبير ذو الضلع a+b و مجموع مساحات المثلثات الأربع. مساحة المربع الكبير هي ²(a+b) لأن طول ضلعه هو a+b. و مجموع مساحات المثلثات هي أربع مرات مساحة مثلث واحد، أي 4(ab/2)، إذن الفرق هو (a+b)²-4(ab/2) بالتبسيط a²+b²+2ab-2ab أي a²+b². بهذا نكون قد برهنا على أن مساحة المربع ذو الضلع c تساوي a²+b²، أي a²+b²=c².
توجد طرق عديدة أخرى لإثبات مبرهنة فيثاغورس، حتى الرئيس الأمريكي الواحد و العشرون جيمس جارفيلد James Garfield برهن، بطريقة قريبة من الطريقة السابقة، على مبرهنة فيثاغورس.
أشكال أخرى للمبرهنة
إستلزامها المضاد للعكس
نص الإستلزام المضاد للعكس:
« إذا كانت أطوال أضلاع مثلث ABC تحقق فإن المثلث ABC ليس قائما في النقطة A. »
رغم أن الإستلزام المضاد للعكس يكافئ منطقيا المبرهنة المباشرة، إلا أن إستعماليهما مختلفان: فمبرهنة فيثاغورس المباشرة تستعمل لحساب طول ضلع مثلث قائم الزاوية بدلالة طولي الضلعين الآخرين، في حين أن إستلزامها المضاد للعكس يستعمل لإثبات كون مثلث (قياسات أضلاعه معلومة) ليس قائم الزاوية.
الإستلزام المضاد للعكس للخاصية العكسية
يقول ما يلي: « إذا كان المثلث ABC ليس قائم الزاوية في A فإن »
تعميم على أشكال هندسية أخرى غير المربعات
عمم إقليدس مبرهنة فيثاغورس في كتابه العناصر (العبارة 31، الجزء VI من كتاب العناصر):
« في المثلثات القائمة الزاوية، مساحة شكل مرسوم على الوتر، يساوي مجموع مساحتي الشكلين المشابهين له المرسومين على ضلعي الزاوية القائمة. »
بتعبير آخر:
« إذا أنشأنا أشكالا متشابهة على أضلاع مثلث قائم الزاوية، فإن مساحتي الشكلين الصغيرين تساوي مساحة الشكل الكبير. »
هذه الخاصية تسمح لنا بالبرهنة على أن مساحة مثلث تساوي مجموع مساحتي الهلالين المرسومين على ضلعي الزاوية القائمة: مبرهنة الهلالين.
استعمالاتها
- تسمح مبرهنة فيثاغورس بحساب المسافة بين نقطتين في معلم متعامد بدلالة إحداثياتهما الديكارتية، إذا كانت و نقطتان من المستوي الإقليدي، فإن المسافة بينهما هي:
إذا كانت إحداثيتا نقطة C في نفس المعلم، فإن المثلث ACB قائم الزاوية في C. المسافتان CA و CB معلومتان:
بينما تمثل المسافة AB طول وتر المثلث ACB.
- بشكل عام، في فضاء إقليدي (أو فضاء تآلفي إقليدي)، المسافة من إلى تساوي:
- يمكن أن نعتبر مبرهنة Parseval تعميما لمبرهنة فيثاغورس في فضاء الجداء الداخلي.
- تعمم مبرهنة فيثاغورس على التبسيطات ذات الأبعاد الكبيرة. إذا كان لرباعي أوجه ركن قائم (ركن من مكعب)، فإن مربع مساحة الوجه المقابل للركن، يساوي مجموع مربعات مساحات الأوجه الثلاثة الأخرى. تعرف هذه المبرهنة أيضا بإسم مبرهنة Gua.
التاريخ
There is debate whether the Pythagorean theorem was discovered once, or many times in many places, and the date of first discovery is uncertain, as is the date of the first proof. Historians of Mesopotamian mathematics have concluded that the Pythagorean rule was in widespread use during the Old Babylonian period (20th to 16th centuries BC), over a thousand years before Pythagoras was born.[2][3][4][5] The history of the theorem can be divided into four parts: knowledge of Pythagorean triples, knowledge of the relationship among the sides of a right triangle, knowledge of the relationships among adjacent angles, and proofs of the theorem within some deductive system.
Written ح. 1800 BC, the Egyptian Middle Kingdom Berlin Papyrus 6619 includes a problem whose solution is the Pythagorean triple 6:8:10, but the problem does not mention a triangle. The Mesopotamian tablet Plimpton 322, also written ح. 1800 BC near Larsa, contains many entries closely related to Pythagorean triples.[6]
In India, the Baudhayana Shulba Sutra, the dates of which are given variously as between the 8th and 5th century BC,[7] contains a list of Pythagorean triples and a statement of the Pythagorean theorem, both in the special case of the isosceles right triangle and in the general case, as does the Apastamba Shulba Sutra (c. 600 BC).[أ]
Byzantine Neoplatonic philosopher and mathematician Proclus, writing in the fifth century AD, states two arithmetic rules, "one of them attributed to Plato, the other to Pythagoras",[9] for generating special Pythagorean triples. The rule attributed to Pythagoras (ح. 570) starts from an odd number and produces a triple with leg and hypotenuse differing by one unit; the rule attributed to Plato (428/427 or 424/423 – 348/347 BC) starts from an even number and produces a triple with leg and hypotenuse differing by two units. According to Thomas L. Heath (1861–1940), no specific attribution of the theorem to Pythagoras exists in the surviving Greek literature from the five centuries after Pythagoras lived.[10] However, when authors such as Plutarch and Cicero attributed the theorem to Pythagoras, they did so in a way which suggests that the attribution was widely known and undoubted.[11][12] Classicist Kurt von Fritz wrote, "Whether this formula is rightly attributed to Pythagoras personally, but one can safely assume that it belongs to the very oldest period of Pythagorean mathematics."[13] Around 300 BC, in Euclid's Elements, the oldest extant axiomatic proof of the theorem is presented.[14]
With contents known much earlier, but in surviving texts dating from roughly the 1st century BC, the Chinese text Zhoubi Suanjing (周髀算经), (The Arithmetical Classic of the Gnomon and the Circular Paths of Heaven) gives a reasoning for the Pythagorean theorem for the (3, 4, 5) triangle — in China it is called the "Gougu theorem" (勾股定理).[15][16] During the Han Dynasty (202 BC to 220 AD), Pythagorean triples appear in The Nine Chapters on the Mathematical Art,[17] together with a mention of right triangles.[18] Some believe the theorem arose first in China,[19] where it is alternatively known as the "Shang Gao theorem" (商高定理),[20] named after the Duke of Zhou's astronomer and mathematician, whose reasoning composed most of what was in the Zhoubi Suanjing.[21]
انظر أيضا
- مبرهنة كليرو، حالة عامة، مع متوازيات أضلاع محيطة بمثلث عادي.
- مبرهنة الكاشي، تعميم لمبرهنة فيثاغورس على كل المثلثات.
- الجبر الخطي
- مثلوث فيثاغورس
- مبرهنة فيرما الأخيرة
- Addition in quadrature
- At Dulcarnon
- British flag theorem
- Fermat's Last Theorem
- Inverse Pythagorean theorem
- Kepler triangle
- Linear algebra
- List of triangle topics
- Lp space
- Nonhypotenuse number
- Parallelogram law
- Parseval's identity
- Ptolemy's theorem
- Pythagorean expectation
- Pythagorean tiling
- Rational trigonometry in Pythagoras' theorem
- Thales theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ملاحظات ومراجع
ملاحظات
- ^ Van der Waerden believed that this material "was certainly based on earlier traditions". Carl Boyer states that the Pythagorean theorem in the Śulba-sũtram may have been influenced by ancient Mesopotamian math, but there is no conclusive evidence in favor or opposition of this possibility.[8]
المراجع
- ^ Neugebauer 1969, p. 36.
- ^ Neugebauer 1969: p. 36 "In other words it was known during the whole duration of Babylonian mathematics that the sum of the squares on the lengths of the sides of a right triangle equals the square of the length of the hypotenuse."
- ^ Friberg, Jöran (1981). "Methods and traditions of Babylonian mathematics: Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations". Historia Mathematica. 8: 277–318. doi:10.1016/0315-0860(81)90069-0.: p. 306 "Although Plimpton 322 is a unique text of its kind, there are several other known texts testifying that the Pythagorean theorem was well known to the mathematicians of the Old Babylonian period."
- ^ Høyrup, Jens. "Babylon: Focus mesopotamischer Geschichte, Wiege früher Gelehrsamkeit, Mythos in der Moderne. 2. Internationales Colloquium der Deutschen Orient-Gesellschaft 24.–26. März 1998 in Berlin".: 393–407, Berlin: Deutsche Orient-Gesellschaft / Saarbrücken: SDV Saarbrücker Druckerei und Verlag., p. 406, "To judge from this evidence alone it is therefore likely that the Pythagorean rule was discovered within the lay surveyors’ environment, possibly as a spin-off from the problem treated in Db2-146, somewhere between 2300 and 1825 BC." (Db2-146 is an Old Babylonian clay tablet from Eshnunna concerning the computation of the sides of a rectangle given its area and diagonal.)
- ^ Robson, E. (2008). Mathematics in Ancient Iraq: A Social History. Princeton University Press.: p. 109 "Many Old Babylonian mathematical practitioners … knew that the square on the diagonal of a right triangle had the same area as the sum of the squares on the length and width: that relationship is used in the worked solutions to word problems on cut-and-paste ‘algebra’ on seven different tablets, from Ešnuna, Sippar, Susa, and an unknown location in southern Babylonia."
- ^ Robson, Eleanor (2001). "Neither Sherlock Holmes nor Babylon: a reassessment of Plimpton 322". Historia Mathematica. 28 (3): 167–206. doi:10.1006/hmat.2001.2317.
- ^ Kim Plofker (2009). Mathematics in India. Princeton University Press. pp. 17–18. ISBN 978-0-691-12067-6.
- ^ Carl Benjamin Boyer; Uta C. Merzbach (2011). "China and India". A history of mathematics (3rd ed.). Wiley. p. 229. ISBN 978-0470525487.
Quote: [In Sulba-sutras,] we find rules for the construction of right angles by means of triples of cords the lengths of which form Pythagorean triages, such as 3, 4, and 5, or 5, 12, and 13, or 8, 15, and 17, or 12, 35, and 37. Although Mesopotamian influence in the Sulvasũtras is not unlikely, we know of no conclusive evidence for or against this. Aspastamba knew that the square on the diagonal of a rectangle is equal to the sum of the squares on the two adjacent sides. Less easily explained is another rule given by Apastamba – one that strongly resembles some of the geometric algebra in Book II of Euclid's Elements. (...)
- ^ Proclus (1970). A Commentary of the First Book of Euclid's Elements. Translated by Morrow, Glenn R. Princeton University Press. 428.6.
- ^ "Introduction and books 1,2". The University Press. March 25, 1908 – via Google Books.
- ^ (Heath 1921, Vol I, p. 144) : "Though this is the proposition universally associated by tradition with the name of Pythagoras, no really trustworthy evidence exists that it was actually discovered by him. The comparatively late writers who attribute it to him add the story that he sacrificed an ox to celebrate his discovery."
- ^ An extensive discussion of the historical evidence is provided in (Euclid 1956, p. 351) page=351
- ^ خطأ استشهاد: وسم
<ref>
غير صحيح؛ لا نص تم توفيره للمراجع المسماةFritz
- ^
Asger Aaboe (1997). Episodes from the early history of mathematics. Mathematical Association of America. p. 51. ISBN 0-88385-613-1.
...it is not until Euclid that we find a logical sequence of general theorems with proper proofs.
- ^ Robert P. Crease (2008). The great equations: breakthroughs in science from Pythagoras to Heisenberg. W W Norton & Co. p. 25. ISBN 978-0-393-06204-5.
- ^ A rather extensive discussion of the origins of the various texts in the Zhou Bi is provided by Christopher Cullen (2007). Astronomy and Mathematics in Ancient China: The 'Zhou Bi Suan Jing'. Cambridge University Press. pp. 139 ff. ISBN 978-0-521-03537-8.
- ^ This work is a compilation of 246 problems, some of which survived the book burning of 213 BC, and was put in final form before 100 AD. It was extensively commented upon by Liu Hui in 263 AD. Philip D. Straffin Jr. (2004). "Liu Hui and the first golden age of Chinese mathematics". In Marlow Anderson; Victor J. Katz; Robin J. Wilson (eds.). Sherlock Holmes in Babylon: and other tales of mathematical history. Mathematical Association of America. pp. 69 ff. ISBN 0-88385-546-1. See particularly §3: Nine chapters on the mathematical art, pp. 71 ff.
- ^ Kangshen Shen; John N. Crossley; Anthony Wah-Cheung Lun (1999). The nine chapters on the mathematical art: companion and commentary. Oxford University Press. p. 488. ISBN 0-19-853936-3.
- ^ In particular, Li Jimin; see Centaurus, Volume 39. Copenhagen: Munksgaard. 1997. pp. 193, 205.
- ^ Chen, Cheng-Yih (1996). "§3.3.4 Chén Zǐ's formula and the Chóng-Chã method; Figure 40". Early Chinese work in natural science: a re-examination of the physics of motion, acoustics, astronomy and scientific thoughts. Hong Kong University Press. p. 142. ISBN 962-209-385-X.
- ^ Wen-tsün Wu (2008). "The Gougu theorem". Selected works of Wen-tsün Wu. World Scientific. p. 158. ISBN 978-981-279-107-8.