فضاء صفري البعد
الهندسة |
---|
التاريخ (خط زمني) |
علماء الهندسة |
في الرياضيات، الفضاء الطبولوجي صفري البعد ( zero-dimensional topological space أو nildimensional space) هو فضاء طبولوجي له البعد صفر فيما يتعلق بواحد من several inequivalent notions of assigning a dimension to a given topological space.[1] A graphical illustration of a nildimensional space is a point.[2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
التعريف
تحديداً:
- A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every open cover of the space has a refinement which is a cover by disjoint open sets.
- A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement.
- A topological space is zero-dimensional with respect to the small inductive dimension if it has a base consisting of clopen sets.
The three notions above agree for separable, metrisable spaces.[بحاجة لمصدر][مطلوب توضيح]
خصائص الفضاءات ذات بعد صفري منخفضة الحث
- A zero-dimensional Hausdorff space is necessarily totally disconnected, but the converse fails. However, a locally compact Hausdorff space is zero-dimensional if and only if it is totally disconnected. (See (Arhangel'skii & Tkachenko 2008, Proposition 3.1.7, p.136) for the non-trivial direction.)
- Zero-dimensional Polish spaces are a particularly convenient setting for descriptive set theory. Examples of such spaces include the Cantor space and Baire space.
- Hausdorff zero-dimensional spaces are precisely the subspaces of topological powers where is given the discrete topology. Such a space is sometimes called a Cantor cube. If I is countably infinite, is the Cantor space.
الطيات
All points of a zero-dimensional manifold are isolated.
الكرة الفائقة
The zero-dimensional hypersphere (0-sphere) is a pair of points, and the zero-dimensional ball is a single point.[3]
ملاحظات
- Arhangel'skii, Alexander; Tkachenko, Mikhail (2008). Topological Groups and Related Structures. Atlantis Studies in Mathematics. Vol. 1. Atlantis Press. ISBN 978-90-78677-06-2.
- Engelking, Ryszard (1977). General Topology. PWN, Warsaw.
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.
المراجع
- ^ Hazewinkel, Michiel (1989). Encyclopaedia of Mathematics, Volume 3. Kluwer Academic Publishers. p. 190. ISBN 9789400959941.
- ^ (2012) "Imagining Negative-Dimensional Space".: 637–642, Phoenix, Arizona, USA: Tessellations Publishing.
- ^ Gibilisco, Stan (1983). Understanding Einstein's Theories of Relativity: Man's New Perspective on the Cosmos. TAB Books. p. 89. ISBN 9780486266596.