أنطون تسايلنگر

أنطون تسايلنگر
Zeilinger with sculpture by Voss-Andreae.jpg
أنطون تسايلنگر يحمل تمثالاً لـ جوليان ڤوس-أندريا، تصوير جيه گوداني
وُلِدَ20 مايو 1945 (العمر 79 سنة)
الجنسيةنمساوي
المدرسة الأمجامعة ڤيينا (UG, PhD)
الجامعة التقنية في ڤيينا (شهادة التأهل للأستاذية)
اللقبانتقال آني كمي
تجارب اختبار بيل
تجربة اختبار قنبلة إليتسور-ڤايدمان
حالة گرينبرگر-هورن-تسايلنگر
تجربة GHZ
الترميز فائق الكثافة
الجوائزجائزة كلوپستگ التذكارية (2004)
وسام إسحاق نيوتن (2007)
جائزة وولف في الفيزياء (2010)
جائزة نوبل في الفيزياء (2022)
السيرة العلمية
المجالاتالفيزياء، ميكانيكا الكم
الهيئاتجامعة ڤيينا
جامعة ميونخ التقنية
الجامعة التقنية في ڤيينا
معهد مساتشوستس للتكنولوجيا
كلية فرنسا
كلية مرتون، أكسفورد
أطروحةقياسات إزالة الاستقطاب النيوتروني على بلورة Dy-single (1972)
المشرف على الدكتوراههلموت راوخ
طلاب الدكتوراهشتفاني بارتس[1][2]
پان جيان‌وِيْ[3]
توماس ينى‌ڤاين[4]

أنطون تسايلنگر Anton Zeilinger (ألمانية: [ˈtsaɪlɪŋɐ]؛ من مواليد 20 مايو 1945) فيزيائي نمساوي مختص بميكانيكا الكم حصل عام 2022 على جائزة نوبل في الفيزياء لعام 2022.[5] تسايلنگر هو أستاذ متقاعد للفيزياء في جامعة ڤيينا وعالم مخضرم في معهد البصريات الكمومية والمعلومات الكمومية (IQOQI) في أكاديمية العلوم النمساوية. تتعلق معظم أبحاثه بالجوانب والتطبيقات الأساسية للتشابك الكمي.

في عام 2007، حصل على وسام إسحاق نيوتن الافتتاحي من معهد الفيزياء بلندن "لاسهاماته المفاهيمية والتجريبية الرائدة في أسس فيزياء الكم، والتي أصبحت حجر الزاوية في مجال المعلومات الكمومية سريع التطور."[6][7] وفي أكتوبر 2022، حصل تسايلنگر على جائزة نوبل في الفيزياء، بالتشارك مع آلان أسپه وجون كلاوزر لعملهم المتميز الذي تضمن تجارب بالفوتونات المتشابكة، أثبتت انتهاك متباينات بل وكان ذلك العمل رائداً في علم المعلومات الكمومية.[8]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

النشأة والتعليم

ولد أنطون تسايلنگر عام 1945 في ريد إم إنكريس، النمسا العليا، النمسا. ودرس الفيزياء والرياضيات في جامعة ڤيينا من عام 1963 إلى عام 1971. وقد حصل على درجة الدكتوراه من جامعة ڤيينا في عام 1971، بأطروحته عن "قياسات إزالة الاستقطاب للنيوترونات على بلورة Dy-single" بإشراف هلموت راوخ. وحصل على شهادة التأهل للأستاذية من الجامعة التقنية في ڤيينا عام 1979.[9][10]


السيرة المهنية

شغل تسايلنگر مناصب في الجامعة التقنية في ڤيينا وجامعة إنسبروك. وقد شغل مناصب كزائر في معهد مساتشوستس للتكنولوجيا (MIT)، في جامعة هومبولت في برلين، كلية مرتون، أكسفورد وكوليج دى فرانس (المدير العام) في باريس. تشمل جوائز تسايلنگر جائزة وولف في الفيزياء (2010)، افتتاح وسام إسحاق نيوتن من IOP (2007) وجائزة الملك فيصل العالمية ( 2005).

تسايلنگر عضو في سبع أكاديميات علمية. أنتون تسايلنگر حالياً أستاذ الفيزياء في جامعة ڤيينا وكبير العلماء في معهد البصريات الكمومية والمعلومات الكمومية في أكاديمية العلوم النمساوية الذي انتُخب مؤخراً رئيساً له.[11] منذ عام 2006، يشغل تسايلنگر منصب نائب رئيس مجلس أمناء معهد العلوم والتكنولوجيا بالنمسا، وهو مشروع طموح بدأه اقتراح تسايلنگر. في عام 2009، أسس أكاديمية تراونكيرشن الدولية[12] وهو مكرس لدعم الطلاب الموهوبين في العلوم والتكنولوجيا. تسايلنگر معجب بـHitchhiker's Guide To The Galaxy من تأليف دوگلاس أدامز، حيث ذهب إلى حد تسمية سفينته الشراعية 42.[13]

الأبحاث

يعمل تسايلنگر في أسس ميكانيكا الكم. واكتشف، مع دانيال گرينبرگر و مايكل هورن، سمات جديدة غير بديهية لحالات الجسيمات الثلاث والأربع. كان أول من أدرك مع فريقه من هم في التجربة. وقد أدى هذا إلى فتح مجال التداخل متعدد الجسيمات والارتباطات الكمومية متعددة الجسيمات. باستخدام الأساليب التي تم تطويرها هناك، أجرى أول انتقال آني كمي من كيوبت مستقل. تبع ذلك تحقيق مقايضة التشابك، وهو المفهوم الأكثر إثارة للاهتمام حيث يتم نقل الحالة المتشابكة آنياً.[بحاجة لمصدر]

أعقب هذا العمل العديد من الاختبارات تباين بيل، بما في ذلك اختبار بل الكوني. تتعلق التجارب الأساسية الأخرى بـ مبرهنات لگت الواقعية غير المحلية، واختبارات السياق الكمي في تجارب كوشن-سپكر، والتجارب على توجيه شرودنگر الغير محلية مع الحالات المتشابكة.[بحاجة لمصدر]

أصبحت العديد من هذه النتائج ذات صلة بتطوير تكنولوجيا المعلومات الكمومية، حيث أجرى أيضاً تجارب رائدة. كما كانت تجربته على الترميز الكمي الكثيف هي الأولى باستخدام التشابك لإثبات بدائية، غير ممكنة في الفيزياء الكلاسيكية. كما أدرك أول تجربة تعمية كمومية قائمة على التشابك ولاحقاً، الاتصال الكمومي على مسافات متزايدة وتنفيذ حالات ذات أبعاد أعلى، مع زيادة سعة المعلومات. كما تشمل التطبيقات الممكنة أيضاً حساب كمي أحادي الاتجاه والحوسبة الكمومية. من بين مساهماته الإضافية في الأسس التجريبية والمفاهيمية لـ ميكانيكا الكم تداخل موجة المادة على طول الطريق من النيوترونات عبر الذرات إلى الجزيئات الكبيرة مثل الفولرين.[بحاجة لمصدر]

الانتقال الآني الكمي

إنجاز تسايلنگر الأكثر شهرة هو إدراكه الأول الانتقال الآني الكمي للكيوبت المستقل.[14] قام لاحقاً بتوسيع هذا العمل لتطوير مصدر لنشر الكيوبتات المنقولة آنياً بحرية[15] والانتقال الآني الكمي لمسافة تزيد عن 144 كيلومتر بين جزيرتين من جزر الكناري.[16] الانتقال الآني الكمي هو مفهوم أساسي في العديد من بروتوكولات المعلومات الكمومية. إلى جانب دورها في نقل المعلومات الكمومية، فهي تعتبر أيضاً آلية مهمة ممكنة لبناء بوابات داخل أجهزة الحاسب الكمومية.[بحاجة لمصدر]

مبادلة التشابك-الانتقال الآني للتشابك

مبادلة التشابك هو الانتقال الآني لحالة التشابك. بعد اقتراحه،[17] تم تحقيق مبادلة التشابك لأول مرة بشكل تجريبي من قبل مجموعة تسايلنگر في عام 1998.[18] ثم تم تطبيقه لإجراء اختبار مبادلة تشابك ذو الاختيار المؤجل.[19] تبادل التشابك هو العنصر الحاسم للمكررات الكمومية التي من المتوقع أن تربط أجهزة الحواسيب الكمومية في المستقبل.[بحاجة لمصدر]

التشابك أكثر من كيوبتين - حالات GHZ وتحقيقها

أنطون تسايلنگر يحمل تمثالاً لـ جوليان ڤوس-أندريا، تصوير جيه گوداني

ساهم أنطون تسايلنگر بشكل حاسم في انفتاح مجال التشابك متعدد الجسيمات.[20]في عام 1990، كان أول من عمل مع دانيال گرينبرگر ومايكل هورن على تشابك أكثر من 2 كيوبت.[21]تعتبر مبرهنة GHZ الناتجة[22] (انظر حالة گرينبرگر-هورن-تسايلنگر) أساسية لفيزياء الكم، لأنه يوفر التناقض الأكثر إيجازاً بين الواقعية المحلية وتنبؤات ميكانيكا الكم.[بحاجة لمصدر]

GHZ states were the first instances of multi-particle entanglement ever investigated.[23] Surprisingly, multi-particle entangled states exhibit qualitatively different properties compared to two-particle entanglement. In the 1990s, it became the main goal of Zeilinger's research to realize such GHZ states in the laboratory, which required the development of many new methods and tools.[بحاجة لمصدر]

Finally, in 1999, he succeeded in providing the first experimental evidence of entanglement beyond two particles[24] and also the first test of quantum nonlocality for GHZ states.[25] He also was the first to realize that there are different classes of higher-dimensional entangled states and proposed W-states. Today, multi-particle states have become an essential workhorse in quantum computation and thus, GHZ-states have even become an individual entry in the PACS code.[بحاجة لمصدر]

الاتصالات الكمية والتشفير الكمي والحوسبة الكمية

In 1996, Anton Zeilinger with his group realized hyper-dense coding.[26] There, one can encode into one qubit more than one classical bit of information. This was the first realization of a quantum information protocol with an entangled state, where one is able to achieve something impossible with classical physics.[بحاجة لمصدر]

In 1998 (published in 2000),[27] his group was the first to implement quantum cryptography with entangled photons. Zeilinger's group is now also developing a quantum cryptography prototype in collaboration with industry.[بحاجة لمصدر]

He then also applied quantum entanglement to optical quantum computation, where in 2005,[28] he performed the first implementation of one-way quantum computation. This is a protocol based on quantum measurement as proposed by Knill, Laflamme and Milburn.[29] Most recently, it has been shown[30] that one-way quantum computation can be used to implement blind quantum computing. This solves a problem in Cloud computing, namely that, whatever algorithm a client employs on a quantum server is completely unknown, i.e. blind, to the operator of the server.[بحاجة لمصدر]

The experiments of Zeilinger and his group on the distribution of entanglement over large distances began with both free-space and fiber-based quantum communication and teleportation between laboratories located on the different sides of the river Danube.[31] This was then extended to larger distances across the city of Vienna[32] and over 144 km between two Canary Islands, resulting in a successful demonstration that quantum communication with satellites is feasible. His dream is to put sources of entangled light onto a satellite in orbit.[13] A first step was achieved during an experiment at the Italian Matera Laser Ranging Observatory.[33]

المزيد من الحالات المتشابكة غير المألوفة

With his group, Anton Zeilinger made many contributions to the realization of novel entangled states. The source for polarization-entangled photon pairs developed with Paul Kwiat when he was a PostDoc in Zeilinger's group[34] became a workhorse in many laboratories worldwide. The first demonstration of entanglement of orbital angular momentum of photons[35] opened up a new burgeoning field of research in many laboratories.[بحاجة لمصدر]

تراكب كمي بالعين المجردة

Zeilinger is also interested to extend quantum mechanics into the macroscopic domain. In the early 1990s, he started experiments in the field of atom optics. He developed a number of ways to coherently manipulate atomic beams, many of which, like the coherent energy shift of an atomic De Broglie wave upon diffraction at a time-modulated light wave, have become cornerstones of today's ultracold atom experiments. In 1999, Zeilinger abandoned atom optics for experiments with very complex and massive macro-molecules – fullerenes. The successful demonstration of quantum interference for these C60 and C70 molecules[36] in 1999 opened up a very active field of research. Key results include the most precise quantitative study to date of decoherence by thermal radiation and by atomic collisions and the first quantum interference of complex biological macro-molecules. This work is continued by Markus Arndt (de).[بحاجة لمصدر]

In 2005, Zeilinger with his group again started a new field, the quantum physics of mechanical cantilevers. The group was the first – in the year 2006 along with work from Heidmann in Paris and Kippenberg in Garching – to demonstrate experimentally the self-cooling of a micro-mirror by radiation pressure, that is, without feedback.[37] That phenomenon can be seen as a consequence of the coupling of a high-entropy mechanical system with a low-entropy radiation field. This work is now continued independently by Markus Aspelmeyer.[بحاجة لمصدر]

Using orbital angular momentum states, he was able to demonstrate entanglement of angular momentum up to 300 ħ.[38]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المزيد من الاختبارات الأساسية

Zeilinger's program of fundamental tests of quantum mechanics is aimed at implementing experimental realizations of many non-classical features of quantum physics for individual systems. In 1998,[39] he provided the final test of Bell's inequality closing the communication loophole by using superfast random number generators. His group also realized the first Bell inequality experiment implementing the freedom-of-choice condition[40] and provided the first realization of a Bell test without the fair sampling assumption for photons.[41] All these experiments are not only of fundamental interest, but also important for quantum cryptography. In 2015, at the same time as the group of Ronald Hanson at Delft University of Technology and the group of Sae-Woo Nam at the National Institute of Standards and Technology (NIST), Zeilinger’s group closed the locality and detection loopholes in Bell experiments,[42] thereby corroborating quantum mechanics and ruling out theories that satisfy local causality and providing definitive proof that quantum cryptography can be unconditionally secure.[بحاجة لمصدر]

Among the further fundamental tests he performed the most notable one is his test of a large class of nonlocal realistic theories proposed by Leggett.[43] The group of theories excluded by that experiment can be classified as those which allow reasonable subdivision of ensembles into sub-ensembles. It goes significantly beyond Bell's theorem. While Bell showed that a theory which is both local and realistic is at variance with quantum mechanics, Leggett considered nonlocal realistic theories where the individual photons are assumed to carry polarization. The resulting Leggett inequality was shown to be violated in the experiments of the Zeilinger group.[44]

In an analogous way, his group showed that even quantum systems where entanglement is not possible exhibit non-classical features which cannot be explained by underlying non-contextual probability distributions.[45] It is expected that these latter experiments will also open up novel ways for quantum information.[بحاجة لمصدر]

قياس تداخل النيوترونات

Anton Zeilinger's earliest work is perhaps his least known. His work on neutron interferometry has provided an important foundation for his later research achievements. As a member of the group of his thesis supervisor, Helmut Rauch, at the Technical University of Vienna, Zeilinger participated in a number of neutron interferometry experiments at the Institut Laue–Langevin (ILL) in Grenoble. His very first such experiment confirmed a fundamental prediction of quantum mechanics, the sign change of a spinor phase upon rotation.[46] This was followed by the first experimental realization of coherent spin superposition of matter waves. He continued his work in neutron interferometry at MIT with C.G. Shull (Nobel Laureate), focusing specifically on dynamical diffraction effects of neutrons in perfect crystals which are due to multi-wave coherent superposition. After his return to Europe, he built up an interferometer for very cold neutrons which preceded later similar experiments with atoms. The fundamental experiments there included a most precise test of the linearity of quantum mechanics and a beautiful double-slit diffraction experiment with only one neutron at a time in the apparatus. Actually, in that experiment, while one neutron was registered, the next neutron still resided in its Uranium nucleus waiting for fission to happen.[بحاجة لمصدر]

Then, as a professor at the University of Innsbruck, Zeilinger started experiments on entangled photons, as the low phase space density of neutrons produced by reactors precluded their use in such experiments. In all his career, from TU Vienna through Innsbruck and back to the University of Vienna, Zeilinger has had a most salubrious effect on the work of his colleagues and competitors alike, always noting connections and extensions to be investigated and unstintingly sharing remarks that have enhanced the field of quantum mechanics from foundational to purely applied work.[بحاجة لمصدر]

التكريم والجوائز

الجوائز العالمية

جوائز نمساوية

المزيد من التكريم

محاضرات فخرية


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

في الثقافة الشعبية

Zeilinger has been interviewed by Morgan Freeman in season 2 of Through the Wormhole.

المراجع

  1. ^ Barz, Stefanie (15 October 2012). "Photonic Quantum Computing". Archived from the original on 4 October 2022. Retrieved 15 October 2021 – via othes.univie.ac.at.
  2. ^ "Prof. Dr. Stefanie Barz | Institute for Functional Matter and Quantum Technologies | University of Stuttgart". www.fmq.uni-stuttgart.de. Archived from the original on 24 October 2021. Retrieved 15 October 2021.
  3. ^ "Prof. Jian-Wei Pan". Archived from the original on 4 March 2016. Retrieved 20 November 2015.
  4. ^ Thomas Jennewein (11 June 2002). "Quantum Communication and Teleportation Experiments using Entangled Photon Pairs" (PDF). Archived from the original (PDF) on 20 November 2015. Retrieved 20 November 2015.
  5. ^ "The Nobel Prize in Physics 2022". NobelPrize.org (in الإنجليزية الأمريكية). Retrieved 2022-10-04.
  6. ^ "Anton Zeilinger scoops first Isaac Newton medal". Physics World (in الإنجليزية البريطانية). 2007-10-03. Retrieved 2022-10-04.
  7. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة :0
  8. ^ Ahlander, Johan; Burger, Ludwig; Pollard, Niklas (2022-10-04). "Nobel physics prize goes to sleuths of 'spooky' quantum science". Reuters (in الإنجليزية). Retrieved 2022-10-04.
  9. ^ "Curriculum Vitae Anton Zeilinger" (PDF). Austrian Academy of Sciences. 2022-09-30. Archived (PDF) from the original on 2022-08-30. Retrieved 2022-10-04.
  10. ^ "Neutron depolarization measurements on a Dy-single crystal" (PDF). Austrian Academy of Sciences. 1972. Archived (PDF) from the original on 2022-01-08. Retrieved 2022-10-04.
  11. ^ "Anton Zeilinger – new President of the Austrian Academy of Sciences". Vienna Center for Quantum Science and Technology. 16 March 2013. Archived from the original on 13 October 2014. Retrieved 23 September 2013.
  12. ^ "International Academy Traunkirchen". Archived from the original on 19 December 2014. Retrieved 15 October 2021.
  13. ^ أ ب Minkel, JR (2007-08-01). "The Gedanken Experimenter". Scientific American. 297 (2): 94–96. Bibcode:2007SciAm.297b..94M. doi:10.1038/scientificamerican0807-94. PMID 17894178.
  14. ^ D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter & A. Zeilinger, Experimental Quantum Teleportation, Nature 390, 575–579 (1997). Abstract Archived 2009-10-29 at the Wayback Machine. Selected for the Nature “Looking Back” category of classic papers from Nature’s archive; one of ISI’s “Highly Cited Papers”.
  15. ^ J.-W. Pan, S. Gasparoni, M. Aspelmeyer, T. Jennewein & A. Zeilinger, Experimental Realization of Freely Propagating Teleported Qubits, Nature 421, 721–725 (2003). Abstract Archived 2013-11-15 at the Wayback Machine.Selected by the International Institute of Physics as one of the top ten Physics Highlights in 2003.
  16. ^ X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin & A. Zeilinger, Quantum teleportation over 143 kilometres using active feed-forward, Nature 489, 269–273 (2012). Abstract Archived 2022-10-04 at the Wayback Machine. Ranked as a “highly cited paper” by Thomson Reuters’ Web of Science, placing it in the 1% of the academic field of physics based on a highly cited threshold for the field and publication year.
  17. ^ M. Zukowski, A. Zeilinger, M. A. Horne & A.K. Ekert, Event-Ready-Detectors Bell Experiment via Entanglement Swapping, Phys. Rev. Lett. 71, 4287–90 (1993). Abstract.
  18. ^ J.-W. Pan, D. Bouwmeester, H. Weinfurter & A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80 (18), 3891–3894 (1998). Abstract.
  19. ^ X.-S. Ma, S.Zotter, J. Kofler, R. Ursin, T. Jennewein, Č. Brukner & A. Zeilinger, Experimental delayed-choice entanglement swapping, Nature Physics 8, 479–484 (2012). Abstract Archived 2022-10-04 at the Wayback Machine.
  20. ^ D. Greenberger; M. Horne; A. Zeilinger (1 August 1993). "Multiparticle Interferometry and the Superposition Principle". Physics Today. 46 (8): 22. Bibcode:1993PhT....46h..22G. doi:10.1063/1.881360. Archived from the original on 23 April 2021. Retrieved 21 April 2021.
  21. ^ D. M. Greenberger, M. A. Horne, A. Shimony & A. Zeilinger, Bell’s Theorem without Inequalities, American Journal of Physics 58, 1131–1143 (1990). This paper has become a citation classic.
  22. ^ Daniel M. Greenberger; Michael A. Horne; Anton Zeilinger (1989). "Going Beyond Bell's Theorem". In Kafatos, Menos (ed.). Bell's Theorem, Quantum Theory, and Conceptions of the Universe (1 ed.). Heidelberg: Springer. pp. 69–72. arXiv:0712.0921. ISBN 978-94-017-0849-4. Archived from the original on 2021-02-24. Retrieved 2021-04-22.
  23. ^ Jian-Wei Pan; Zeng-Bing Chen; Chao-Yang Lu; Harald Weinfurter; Anton Zeilinger; Marek Żukowski (11 May 2012). "Multiphoton entanglement and interferometry". Rev. Mod. Phys. 84 (2): 777. arXiv:0805.2853. Bibcode:2012RvMP...84..777P. doi:10.1103/RevModPhys.84.777. S2CID 119193263. Archived from the original on 25 May 2021. Retrieved 21 April 2021. Ranked as a “highly cited paper” by Thomson Reuters’ Web of Science, placing it in the 1% of the academic field of physics based on a highly cited threshold for the field and publication year.
  24. ^ D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter & A. Zeilinger, Observation of three-photon Greenberger–Horne–Zeilinger entanglement, Phys. Rev. Lett. 82 (7), 1345–1349 (1999). Abstract Archived 2022-10-04 at the Wayback Machine.
  25. ^ J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter & A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement, Nature 403, 515–519 (2000). Abstract Archived 2013-11-15 at the Wayback Machine.
  26. ^ K. Mattle, H. Weinfurter, P.G. Kwiat & A. Zeilinger, Dense Coding in Experimental Quantum Communication, Phys. Rev. Lett. 76, 4656–59 (1996). Abstract.
  27. ^ T. Jennewein, C. Simon, G. Weihs, H. Weinfurter & A. Zeilinger, Quantum Cryptography with Entangled Photons, Phys. Rev. Lett. 84, 4729–4732 (2000). Abstract. This paper was featured in several popular science magazines, both online and in print.
  28. ^ P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer & A. Zeilinger, Experimental one-way quantum computing, Nature 434 (7030), 169–176 (2005). Abstract Archived 2022-10-04 at the Wayback Machine.
  29. ^ E. Knill, R. Laflamme & G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409, 46–52 (2001). Abstract Archived 2013-11-14 at the Wayback Machine.
  30. ^ S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger & P. Walther, Demonstration of Blind Quantum Computing, Science 20, 303–308 (2012). Abstract.
  31. ^ Rupert Ursin; Thomas Jennewein; Markus Aspelmeyer; Rainer Kaltenbaek; Michael Lindenthal; Philip Walther; Anton Zeilinger (18 August 2004). "Quantum teleportation across the Danube". Nature. 430 (7002): 849. doi:10.1038/430849a. PMID 15318210. S2CID 4426035. Archived from the original on 4 October 2022. Retrieved 21 April 2021.
  32. ^ Markus Aspelmeyer; Hannes R. Böhm; Tsewang Gyatso; Thomas Jennewein; Rainer Kaltenbaek; Michael Lindenthal; Gabriel Molina-Terriza; Andreas Poppe; Kevin Resch; Michael Taraba; Rupert Ursin; Philip Walther; Anton Zeilinger (1 August 2003). "Long-Distance Free-Space Distribution of Quantum Entanglement". Science. 301 (5633): 621–623. Bibcode:2003Sci...301..621A. doi:10.1126/science.1085593. PMID 12817085. S2CID 40583982.
  33. ^ P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger & C. Barbieri,Experimental verification of the feasibility of a quantum channel between Space and Earth Archived 2017-11-22 at the Wayback Machine, New Journal of Physics 10, 033038 (2008). Highlight of New J. Phys. for 2008.
  34. ^ P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko & Y.H. Shih, New High-Intensity Source of Polarization-Entangled Photon Pairs, Phys. Rev. Lett. 75 (24), 4337–41 (1995). Abstract.
  35. ^ A. Mair, A. Vaziri, G. Weihs & A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412 (6844), 313–316 (2001). Abstract Archived 2010-05-03 at the Wayback Machine.
  36. ^ M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw & A. Zeilinger, Wave-particle duality of C60 molecules, Nature 401, 680–682 (1999). Abstract Archived 2012-09-21 at the Wayback Machine. Selected by the American Physical Society as a physics highlight of 1999.
  37. ^ S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer & A. Zeilinger, Self-cooling of a micro-mirror by radiation pressure, Nature 444, 67–70 (2006). Abstract Archived 2013-08-01 at the Wayback Machine. Selected as “Highlight of the recent literature” by Science (January 2007). Ranked as a highly cited paper by Thomson Reuters’ Web of Science, placing it in the 1% of the academic field of physics based on a highly cited threshold for the field and publication year.
  38. ^ R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schäff, S. Ramelow & A. Zeilinger, Quantum entanglement of high angular momenta, Science 338, 640–643 (2012). Abstract Archived 2021-12-29 at the Wayback Machine. Selected as one of the top 10 breakthroughs of the year 2012 by IOP’s Physics World. Also featured in DPG’s Physik Journal. Ranked as a “highly cited paper” by Thomson Reuters’ Web of Science, placing it in the 1% of the academic field of physics based on a highly cited threshold for the field and publication year.
  39. ^ G. Weihs, T. Jennewein, C. Simon, H. Weinfurter & A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett. 81 (23), 5039–5043 (1998). Abstract. This paper is a classic. It is cited (among others) in the German Wikipedia article on Bell’s inequality and in several popular science books and science books for University students.
  40. ^ T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X. Ma, T. Herbst, L. Ratschbacher, A. Fedrizzi, N. K. Langford, T. Jennewein & A. Zeilinger, Violation of local realism with freedom of choice, PNAS 107 (46), 19709 – 19713 (2010). Abstract
  41. ^ M. Giustina; A. Mech; S. Ramelow; B. Wittmann; J. Kofler; J. Beyer; A. Lita; B. Calkins; T. Gerrits; S.-W. Nam; R. Ursin; A. Zeilinger (2013). "Bell violation using entangled photons without the fair-sampling assumption". Nature. 497 (7448): 227–230. arXiv:1212.0533. Bibcode:2013Natur.497..227G. doi:10.1038/nature12012. PMID 23584590. S2CID 18877065. Archived from the original on 2022-10-04. Retrieved 2021-04-21.. Ranked as a “highly cited paper” by Thomson Reuters’ Web of Science, placing it in the 1% of the academic field of physics based on a highly cited threshold for the field and publication year.
  42. ^ Giustina, Marissa; Versteegh, Marijn A. M.; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Mitchell, Morgan W.; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E.; Shalm, Lynden K.; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton (2015). "Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons". Physical Review Letters. 115 (25): 250401. arXiv:1511.03190. Bibcode:2015PhRvL.115y0401G. doi:10.1103/PhysRevLett.115.250401. PMID 26722905. S2CID 13789503. Archived from the original on 2017-05-12. Retrieved 2016-05-16.
  43. ^ A. J. Leggett, Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem, Foundations of Physics 33 (10), 1469–1493 (2003)(doi:10.1023/A:1026096313729) Abstract Archived 2022-10-04 at the Wayback Machine.
  44. ^ S. Gröblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Zukowski, M. Aspelmeyer & A. Zeilinger, An experimental test of non-local realism, Nature 446, 871–875 (2007). Abstract Archived 2016-04-15 at the Wayback Machine.
  45. ^ R. Lapkiewicz, P. Li, C. Schäff, N. K. Langford, S. Ramelow, M. Wiesniak & A. Zeilinger, Experimental non-classicality of an indivisible quantum system, Nature 474, 490–493 (2011).Abstract Archived 2011-09-07 at the Wayback Machine
  46. ^ H. Rauch; A. Zeilinger; G. Badurek; A. Wilfing; W. Bauspiess; U. Bonse (20 October 1975). "Verification of coherent spinor rotation of fermions". Physics Letters A. 54 (6): 425–427. Bibcode:1975PhLA...54..425R. doi:10.1016/0375-9601(75)90798-7. Archived from the original on 4 October 2022. Retrieved 21 April 2021.
  47. ^ Editor, ÖGV. (2015). Wilhelm Exner Medal. Austrian Trade Association. ÖGV. Austria.
  48. ^ "Reply to a parliamentary question" (PDF) (in الألمانية). p. 1436. Archived (PDF) from the original on 1 May 2020. Retrieved 25 November 2012.
  49. ^ "Ten people who could change the world". New Statesman. 8 January 2009. Archived from the original on 1 January 2011. Retrieved 30 May 2011.
  50. ^ McFadden, Johnjoe (2005-10-17). "Anton Zeilinger". New Statesman. Archived from the original on 2011-06-07. Retrieved 2012-10-28. Johnjoe McFadden on the physicist who could just make the dream of teleportation possible
  51. ^ "Celebration of 128th Birth Anniversary of Satyendranath Bose & 25th S.N Bose Memorial Lecture by Prof. Anton Zeilinger". Archived from the original on 2021-04-20. Retrieved 2021-04-20.
  52. ^ "Lee Historical Lecture: Anton Zeilinger". Harvard University. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  53. ^ "Robert Hofstadter Memorial lecture series". Stanford University, Physics Department. Retrieved 20 April 2021.
  54. ^ "Vice-Chancellor's Open Lecture Series". University of Cape Town News. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  55. ^ "Special Events and Colloquia". The City College of New York. 8 October 2019. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  56. ^ "The Ockham Lectures". Merton College. Archived from the original on 13 April 2021. Retrieved 20 April 2021.
  57. ^ "Celsius-Linnaeus Lectures on unknown worlds". Uppsala University. 18 February 2010. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  58. ^ "Kavli Colloquia". Kavli Institute of Nanoscience. Archived from the original on 19 April 2021. Retrieved 20 April 2021.
  59. ^ "AT 2 Newton Lecture 2008: Quantum Information" (Video). Institute of Physics. 10 August 2012. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  60. ^ "2007: Anton Zeilinger". Wolfgang-Paul Lecture (in الألمانية). Bonn University. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  61. ^ "Stiftungsprofessor 2006: Anton Zeilinger". Johannes-Gutenberg Stiftungsprofessur (in الألمانية). Johannes Gutenberg Universität Mainz. Archived from the original on 20 April 2021. Retrieved 20 April 2021.
  62. ^ أ ب "Colloquium Ehrenfestii". Leiden Institute of Physics. Archived from the original on 7 May 2021. Retrieved 21 April 2021.
  63. ^ "The Schrödinger Lecture". Imperial College London. Archived from the original on 18 April 2021. Retrieved 21 April 2021.
  64. ^ "The Schrödinger Lecture Series". Trinity College Dublin. Archived from the original on 21 April 2021. Retrieved 21 April 2021.
  65. ^ "H.L. Welsh Distinguished Lecturers in Physics, 1975-2013". University of Toronto. Archived from the original on 21 April 2021. Retrieved 21 April 2021.
خطأ استشهاد: الوسم <ref> ذو الاسم "nobelprize" المُعرّف في <references> غير مستخدم في النص السابق.

وصلات خارجية

Wikiquote-logo.svg اقرأ اقتباسات ذات علاقة بأنطون تسايلنگر، في معرفة الاقتباس.