مويجة
في الفيزياء، المويجة Wavelet هي موجة على سطح سائل لها طول موجي قصير للغاية لدرجة أن حركة السائل تحكم غالبا بقوة التوتر السطحي. ويجب أن يكون الطول الموجي للمويجة أقل من :
- λc = 2π√(γ/ρg)
حيث γ هى التوتر السطحي ، ρ كثافة السائل. وللماء, λc = 1.7cm.
فى الكهرباء، المويجة هى مكون التيار المتردد الناتج من التيار المستمر لمصدر طاقة ناتج ضمن مصدر الطاقة . وفى حالة عدم التحديد ، تكون النسبة المئوية للمويجة هى النسبة بين قيمة جذر متوسط المربع لمويجة الفولطية إلى القيمة المطلقة لمجموع الفولطية .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
قائمة المويجات
المويجات المتقطعة
- Beylkin (18)
- Biorthogonal nearly coiflet (BNC) wavelets
- Coiflet (6, 12, 18, 24, 30)
- Cohen-Daubechies-Feauveau wavelet (Sometimes referred to as CDF N/P or Daubechies biorthogonal wavelets)
- Daubechies wavelet (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, etc.)
- Binomial-QMF (Also referred to as Daubechies wavelet)
- Haar wavelet
- Mathieu wavelet
- Legendre wavelet
- Villasenor wavelet
- Symlet[1]
المويجات المستمرة
القيم الحقيقية
- Beta wavelet
- Hermitian wavelet
- Hermitian hat wavelet
- Meyer wavelet
- Mexican hat wavelet
- Poisson wavelet
- Shannon wavelet
- Spline wavelet
- Strömberg wavelet
القيم المركبة
انظر أيضاً
- Chirplet transform
- Curvelet
- Digital cinema
- Filter banks
- Fractal compression
- Fractional Fourier transform
- JPEG 2000
- Multiresolution analysis
- Noiselet
- Non-separable wavelet
- Scale space
- Scaled correlation
- Shearlet
- Short-time Fourier transform
- Ultra wideband radio- transmits wavelets
- Wave packet
- Gabor wavelet#Wavelet space[2]
- Dimension reduction
- Fourier-related transforms
- Spectrogram
- Huygens–Fresnel principle (physical wavelets)
المراجع
الهامش
- ^ Matlab Toolbox – URL: http://matlab.izmiran.ru/help/toolbox/wavelet/ch06_a32.html
- ^ Erik Hjelmås (1999-01-21) Gabor Wavelets URL: http://www.ansatt.hig.no/erikh/papers/scia99/node6.html
المصادر
- Haar A., Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen, 69, pp 331–371, 1910.
- Ingrid Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992, ISBN 0-89871-274-2
- Ali Akansu and Richard Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, Wavelets, Academic Press, 1992, ISBN 0-12-047140-X
- P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, 1993, ISBN 0-13-605718-7
- Gerald Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1994, ISBN 0-8176-3711-7
- Mladen Victor Wickerhauser, Adapted Wavelet Analysis From Theory to Software, A K Peters Ltd, 1994, ISBN 1-56881-041-5
- Martin Vetterli and Jelena Kovačević, "Wavelets and Subband Coding", Prentice Hall, 1995, ISBN 0-13-097080-8
- Barbara Burke Hubbard, "The World According to Wavelets: The Story of a Mathematical Technique in the Making", AK Peters Ltd, 1998, ISBN 1-56881-072-5, ISBN 978-1-56881-072-0
- Stéphane Mallat, "A wavelet tour of signal processing" 2nd Edition, Academic Press, 1999, ISBN 0-12-466606-X
- Donald B. Percival and Andrew T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press, 2000, ISBN 0-521-68508-7
- Ramazan Gençay, Faruk Selçuk and Brandon Whitcher, An Introduction to Wavelets and Other Filtering Methods in Finance and Economics, Academic Press, 2001, ISBN 0-12-279670-5
- Paul S. Addison, The Illustrated Wavelet Transform Handbook, Institute of Physics, 2002, ISBN 0-7503-0692-0
- B. Boashash, editor, "Time-Frequency Signal Analysis and Processing – A Comprehensive Reference", Elsevier Science, Oxford, 2003, ISBN 0-08-044335-4.
- Tony F. Chan and "Jackie (Jianhong) Shen", Image Processing and Analysis – Variational, PDE, Wavelet, and Stochastic Methods, Society of Applied Mathematics, ISBN 0-89871-589-X (2005)
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 13.10. Wavelet Transforms", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
وصلات خارجية
- Wavelet Digest
- Wavelets: Software – a list of useful wavelet transform frameworks, libraries, and other software
- Hazewinkel, Michiel, ed. (2001), "Wavelet analysis", Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104
- 1st NJIT Symposium on Wavelets (April 30, 1990) (First Wavelets Conference in USA)
- Binomial-QMF Daubechies Wavelets
- Wavelets by Gilbert Strang, American Scientist 82 (1994) 250–255. (A very short and excellent introduction)
- Course on Wavelets given at UC Santa Barbara, 2004
- Wavelets for Kids (PDF file) (Introductory (for very smart kids!))
- WITS: Where Is The Starlet? A dictionary of tens of wavelets and wavelet-related terms ending in -let, from activelets to x-lets through bandlets, contourlets, curvelets, noiselets, wedgelets.
- The Fractional Spline Wavelet Transform describes a fractional wavelet transform based on fractional b-Splines.
- A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity provides a tutorial on two-dimensional oriented wavelets and related geometric multiscale transforms.
- Signal Denoising using Wavelets
- Concise Introduction to Wavelets by René Puschinger