قائمة أمثلة على مستوى النبائط
عمليات تصنيع أشباه الموصلات |
---|
MOSFET scaling (process nodes) |
|
المستقبل
|
Listed are many semiconductor scale examples for various metal–oxide–semiconductor field-effect transistor (MOSFET, or MOS transistor) semiconductor manufacturing process nodes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timeline of MOSFET demonstrations
PMOS and NMOS
Date | Channel length | Oxide thickness[1] | MOSFET logic | Researcher(s) | Organization | Ref |
---|---|---|---|---|---|---|
June 1960 | 20,000 nm | 100 nm | PMOS | Mohamed M. Atalla, Dawon Kahng | Bell Telephone Laboratories | [2][3] |
NMOS | ||||||
10,000 nm | 100 nm | PMOS | Mohamed M. Atalla, Dawon Kahng | Bell Telephone Laboratories | [4] | |
NMOS | ||||||
May 1965 | 8,000 nm | 150 nm | NMOS | Chih-Tang Sah, Otto Leistiko, A.S. Grove | Fairchild Semiconductor | [5] |
5,000 nm | 170 nm | PMOS | ||||
December 1972 | 1,000 nm | ? | PMOS | Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu | IBM T.J. Watson Research Center | [6][7][8] |
1973 | 7,500 nm | ? | NMOS | Sohichi Suzuki | NEC | [9][10] |
6,000 nm | ? | PMOS | ? | Toshiba | [11][12] | |
October 1974 | 1,000 nm | 35 nm | NMOS | Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu | IBM T.J. Watson Research Center | [13] |
500 nm | ||||||
September 1975 | 1,500 nm | 20 nm | NMOS | Ryoichi Hori, Hiroo Masuda, Osamu Minato | Hitachi | [7][14] |
March 1976 | 3,000 nm | ? | NMOS | ? | Intel | [15] |
April 1979 | 1,000 nm | 25 nm | NMOS | William R. Hunter, L. M. Ephrath, Alice Cramer | IBM T.J. Watson Research Center | [16] |
December 1984 | 100 nm | 5 nm | NMOS | Toshio Kobayashi, Seiji Horiguchi, K. Kiuchi | Nippon Telegraph and Telephone | [17] |
December 1985 | 150 nm | 2.5 nm | NMOS | Toshio Kobayashi, Seiji Horiguchi, M. Miyake, M. Oda | Nippon Telegraph and Telephone | [18] |
75 nm | ? | NMOS | Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis | MIT | [19] | |
January 1986 | 60 nm | ? | NMOS | Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis | MIT | [20] |
June 1987 | 200 nm | 3.5 nm | PMOS | Toshio Kobayashi, M. Miyake, K. Deguchi | Nippon Telegraph and Telephone | [21] |
December 1993 | 40 nm | ? | NMOS | Mizuki Ono, Masanobu Saito, Takashi Yoshitomi | Toshiba | [22] |
September 1996 | 16 nm | ? | PMOS | Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba | NEC | [23] |
June 1998 | 50 nm | 1.3 nm | NMOS | Khaled Z. Ahmed, Effiong E. Ibok, Miryeong Song | Advanced Micro Devices (AMD) | [24][25] |
December 2002 | 6 nm | ? | PMOS | Bruce Doris, Omer Dokumaci, Meikei Ieong | IBM | [26][27][28] |
December 2003 | 3 nm | ? | PMOS | Hitoshi Wakabayashi, Shigeharu Yamagami | NEC | [29][27] |
? | NMOS |
CMOS (single-gate)
Date | Channel length | Oxide thickness[1] | Researcher(s) | Organization | Ref |
---|---|---|---|---|---|
February 1963 | ? | ? | Chih-Tang Sah, Frank Wanlass | Fairchild Semiconductor | [30][31] |
1968 | 20,000 nm | 100 nm | ? | RCA Laboratories | [32] |
1970 | 10,000 nm | 100 nm | ? | RCA Laboratories | [32] |
December 1976 | 2,000 nm | ? | A. Aitken, R.G. Poulsen, A.T.P. MacArthur, J.J. White | Mitel Semiconductor | [33] |
February 1978 | 3,000 nm | ? | Toshiaki Masuhara, Osamu Minato, Toshio Sasaki, Yoshio Sakai | Hitachi Central Research Laboratory | [34][35][36] |
February 1983 | 1,200 nm | 25 nm | R.J.C. Chwang, M. Choi, D. Creek, S. Stern, P.H. Pelley | Intel | [37][38] |
900 nm | 15 nm | Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima | Nippon Telegraph and Telephone (NTT) | [37][39] | |
December 1983 | 1,000 nm | 22.5 nm | G.J. Hu, Yuan Taur, Robert H. Dennard, Chung-Yu Ting | IBM T.J. Watson Research Center | [40] |
February 1987 | 800 nm | 17 nm | T. Sumi, Tsuneo Taniguchi, Mikio Kishimoto, Hiroshige Hirano | Matsushita | [37][41] |
700 nm | 12 nm | Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima | Nippon Telegraph and Telephone (NTT) | [37][42] | |
September 1987 | 500 nm | 12.5 nm | Hussein I. Hanafi, Robert H. Dennard, Yuan Taur, Nadim F. Haddad | IBM T.J. Watson Research Center | [43] |
December 1987 | 250 nm | ? | Naoki Kasai, Nobuhiro Endo, Hiroshi Kitajima | NEC | [44] |
February 1988 | 400 nm | 10 nm | M. Inoue, H. Kotani, T. Yamada, Hiroyuki Yamauchi | Matsushita | [37][45] |
December 1990 | 100 nm | ? | Ghavam G. Shahidi, Bijan Davari, Yuan Taur, James D. Warnock | IBM T.J. Watson Research Center | [46] |
1993 | 350 nm | ? | ? | Sony | [47] |
1996 | 150 nm | ? | ? | Mitsubishi Electric | |
1998 | 180 nm | ? | ? | TSMC | [48] |
December 2003 | 5 nm | ? | Hitoshi Wakabayashi, Shigeharu Yamagami, Nobuyuki Ikezawa | NEC | [29][49] |
Multi-gate MOSFET (MuGFET)
Date | Channel length | MuGFET type | Researcher(s) | Organization | Ref |
---|---|---|---|---|---|
August 1984 | ? | DGMOS | Toshihiro Sekigawa, Yutaka Hayashi | Electrotechnical Laboratory (ETL) | [50] |
1987 | 2,000 nm | DGMOS | Toshihiro Sekigawa | Electrotechnical Laboratory (ETL) | [51] |
December 1988 | 250 nm | DGMOS | Bijan Davari, Wen-Hsing Chang, Matthew R. Wordeman, C.S. Oh | IBM T.J. Watson Research Center | [52][53] |
180 nm | |||||
? | GAAFET | Fujio Masuoka, Hiroshi Takato, Kazumasa Sunouchi, N. Okabe | Toshiba | [54][55][56] | |
December 1989 | 200 nm | FinFET | Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto, Eiji Takeda | Hitachi Central Research Laboratory | [57][58][59] |
December 1998 | 17 nm | FinFET | Digh Hisamoto, Chenming Hu, Tsu-Jae King Liu, Jeffrey Bokor | University of California (Berkeley) | [60][61] |
2001 | 15 nm | FinFET | Chenming Hu, Yang‐Kyu Choi, Nick Lindert, Tsu-Jae King Liu | University of California (Berkeley) | [60][62] |
December 2002 | 10 nm | FinFET | Shibly Ahmed, Scott Bell, Cyrus Tabery, Jeffrey Bokor | University of California (Berkeley) | [60][63] |
June 2006 | 3 nm | GAAFET | Hyunjin Lee, Yang-kyu Choi, Lee-Eun Yu, Seong-Wan Ryu | KAIST | [64][65] |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other types of MOSFET
Date | Channel length (nm) |
Oxide thickness (nm)[1] |
MOSFET type |
Researcher(s) | Organization | Ref |
---|---|---|---|---|---|---|
October 1962 | ? | ? | TFT | Paul K. Weimer | RCA Laboratories | [66][67] |
1965 | ? | ? | GaAs | H. Becke, R. Hall, J. White | RCA Laboratories | [68] |
October 1966 | 100,000 | 100 | TFT | T.P. Brody, H.E. Kunig | Westinghouse Electric | [69][70] |
August 1967 | ? | ? | FGMOS | Dawon Kahng, Simon Min Sze | Bell Telephone Laboratories | [71] |
October 1967 | ? | ? | MNOS | H.A. Richard Wegener, A.J. Lincoln, H.C. Pao | Sperry Corporation | [72] |
July 1968 | ? | ? | BiMOS | Hung-Chang Lin, Ramachandra R. Iyer | Westinghouse Electric | [73][74] |
October 1968 | ? | ? | BiCMOS | Hung-Chang Lin, Ramachandra R. Iyer, C.T. Ho | Westinghouse Electric | [75][74] |
1969 | ? | ? | VMOS | ? | Hitachi | [76][77] |
September 1969 | ? | ? | DMOS | Y. Tarui, Y. Hayashi, Toshihiro Sekigawa | Electrotechnical Laboratory (ETL) | [78][79] |
October 1970 | ? | ? | ISFET | Piet Bergveld | University of Twente | [80][81] |
October 1970 | 1000 | ? | DMOS | Y. Tarui, Y. Hayashi, Toshihiro Sekigawa | Electrotechnical Laboratory (ETL) | [82] |
1977 | ? | ? | VDMOS | John Louis Moll | HP Labs | [76] |
? | ? | LDMOS | ? | Hitachi | [83] | |
July 1979 | ? | ? | IGBT | Bantval Jayant Baliga, Margaret Lazeri | General Electric | [84] |
December 1984 | 2000 | ? | BiCMOS | H. Higuchi, Goro Kitsukawa, Takahide Ikeda, Y. Nishio | Hitachi | [85] |
May 1985 | 300 | ? | ? | K. Deguchi, Kazuhiko Komatsu, M. Miyake, H. Namatsu | Nippon Telegraph and Telephone | [86] |
February 1985 | 1000 | ? | BiCMOS | H. Momose, Hideki Shibata, S. Saitoh, Jun-ichi Miyamoto | Toshiba | [87] |
November 1986 | 90 | 8.3 | ? | Han-Sheng Lee, L.C. Puzio | General Motors | [88] |
December 1986 | 60 | ? | ? | Ghavam G. Shahidi, Dimitri A. Antoniadis, Henry I. Smith | MIT | [89][20] |
May 1987 | ? | 10 | ? | Bijan Davari, Chung-Yu Ting, Kie Y. Ahn, S. Basavaiah | IBM T.J. Watson Research Center | [90] |
December 1987 | 800 | ? | BiCMOS | Robert H. Havemann, R. E. Eklund, Hiep V. Tran | Texas Instruments | [91] |
June 1997 | 30 | ? | EJ-MOSFET | Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba | NEC | [92] |
1998 | 32 | ? | ? | ? | NEC | [27] |
1999 | 8 | ? | ? | ? | ||
April 2000 | 8 | ? | EJ-MOSFET | Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba | NEC | [93] |
Commercial products using micro-scale MOSFETs
Products featuring 20 μm manufacturing process
- RCA's CD4000 series of integrated circuits (ICs) beginning in 1968.[32]
Products featuring 10 μm manufacturing process
- Intel 4004, the first single-chip microprocessor CPU, launched in 1971.
- Intel 8008 CPU launched in 1972.
- MOS Technology 6502 1 MHz CPU launched in 1975 (8 μm).
Products featuring 8 μm manufacturing process
- Intel 1103, an early dynamic random-access memory (DRAM) chip launched in 1970.[94]
Products featuring 6 μm manufacturing process
- Toshiba TLCS-12, a microprocessor developed for the Ford EEC (Electronic Engine Control) system in 1973.[11]
- Intel 8080 CPU launched in 1974 was manufactured using this process.[95]
- The Television Interface Adaptor, the custom graphics and audio chip developed for the Atari 2600 in 1977.[96]
- MOS Technology SID, a programmable sound generator developed for the Commodore 64 in 1982.[96]
- MOS Technology VIC-II, a video display controller developed for the Commodore 64 in 1982 (5 μm).[96]
Products featuring 3 μm manufacturing process
- Intel 8085 CPU launched in 1976.[97]
- Intel 8086 CPU launched in 1978.[95]
- Intel 8088 CPU launched in 1979.
- Motorola 68000 8 MHz CPU launched in 1979 (3.5 μm).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Products featuring 1.5 μm manufacturing process
- NEC's 64 kb SRAM memory chip in 1981.[47]
- Intel 80286 CPU launched in 1982.
- The Amiga Advanced Graphics Architecture (initially sold in 1992) included chips such as Denise that were manufactured using a 1.5 μm CMOS process.[98]
Products featuring 1 μm manufacturing process
- NTT's DRAM memory chips, including its 64 kb chip in 1979 and 256 kb chip in 1980.[37]
- NEC's 1 Mb DRAM memory chip in 1984.[47]
- Intel 80386 CPU launched in 1985.
Products featuring 800 nm manufacturing process
- NTT's 1 Mb DRAM memory chip in 1984.[37]
- NEC and Toshiba used this process for their 4 Mb DRAM memory chips in 1986.[47]
- Hitachi, IBM, Matsushita and Mitsubishi Electric used this process for their 4 Mb DRAM memory chips in 1987.[37]
- Toshiba's 4 Mb EPROM memory chip in 1987.[47]
- Hitachi, Mitsubishi and Toshiba used this process for their 1 Mb SRAM memory chips in 1987.[47]
- Intel 486 CPU launched in 1989.
- microSPARC I launched in 1992.
- First Intel P5 Pentium CPUs at 60 MHz and 66 MHz launched in 1993.
Products featuring 600 nm manufacturing process
- Mitsubishi Electric, Toshiba and NEC introduced 16 Mb DRAM memory chips manufactured with a 600 nm process in 1989.[47]
- NEC's 16 Mb EPROM memory chip in 1990.[47]
- Mitsubishi's 16 Mb flash memory chip in 1991.[47]
- Intel 80486DX4 CPU launched in 1994.
- IBM/Motorola PowerPC 601, the first PowerPC chip, was produced in 0.6 μm.
- Intel Pentium CPUs at 75 MHz, 90 MHz and 100 MHz.
Products featuring 350 nm manufacturing process
- Sony's 16 Mb SRAM memory chip in 1994.[47]
- NEC VR4300 (1995), used in the Nintendo 64 game console.
- Intel Pentium Pro (1995), Pentium (P54CS, 1995), and initial Pentium II CPUs (Klamath, 1997).
- AMD K5 (1996) and original AMD K6 (Model 6, 1997) CPUs.
- Parallax Propeller, 8 core microcontroller.[99]
Products featuring 250 nm manufacturing process
- Hitachi's 16 Mb SRAM memory chip in 1993.[47]
- Hitachi and NEC introduced 256 Mb DRAM memory chips manufactured with this process in 1993, followed by Matsushita, Mitsubishi Electric and Oki in 1994.[47]
- NEC's 1 Gb DRAM memory chip in 1995.[47]
- Hitachi's 128 Mb NAND flash memory chip in 1996.[47]
- DEC Alpha 21264A, which was made commercially available in 1999.
- AMD K6-2 Chomper and Chomper Extended. Chomper was released on May 28, 1998.
- AMD K6-III "Sharptooth" used 250 nm.
- Mobile Pentium MMX Tillamook, released in August 1997.
- Pentium II Deschutes.
- Dreamcast console's Hitachi SH-4 CPU and PowerVR2 GPU, released in 1998.
- Pentium III Katmai.
- Initial PlayStation 2's Emotion Engine CPU.
Processors using 180 nm manufacturing technology
- Intel Coppermine E- October 1999
- Sony PlayStation 2 console's Emotion Engine and Graphics Synthesizer – March 2000[100]
- ATI Radeon R100 and RV100 Radeon 7000 – 2000
- AMD Athlon Thunderbird – June 2000
- Intel Celeron (Willamette) – May 2002
- Motorola PowerPC 7445 and 7455 (Apollo 6) – January 2002
Processors using 130 nm manufacturing technology
- Fujitsu SPARC64 V – 2001[101]
- Gekko by IBM and Nintendo (GameCube console) – 2001
- Motorola PowerPC 7447 and 7457 – 2002
- IBM PowerPC G5 970 – October 2002 – June 2003
- Intel Pentium III Tualatin and Coppermine – 2001-04
- Intel Celeron Tualatin-256 – 2001-10-02
- Intel Pentium M Banias – 2003-03-12
- Intel Pentium 4 Northwood- 2002-01-07
- Intel Celeron Northwood-128 – 2002-09-18
- Intel Xeon Prestonia and Gallatin – 2002-02-25
- VIA C3 – 2001
- AMD Athlon XP Thoroughbred, Thorton, and Barton
- AMD Athlon MP Thoroughbred – 2002-08-27
- AMD Athlon XP-M Thoroughbred, Barton, and Dublin
- AMD Duron Applebred – 2003-08-21
- AMD K7 Sempron Thoroughbred-B, Thorton, and Barton – 2004-07-28
- AMD K8 Sempron Paris – 2004-07-28
- AMD Athlon 64 Clawhammer and Newcastle – 2003-09-23
- AMD Opteron Sledgehammer – 2003-06-30
- Elbrus 2000 1891ВМ4Я (1891VM4YA) – 2008-04-27 [1]
- MCST-R500S 1891BM3 – 2008-07-27 [2]
- Vortex 86SX – [3]
Commercial products using nano-scale MOSFETs
Chips using 90 nm manufacturing technology
- Sony–Toshiba Emotion Engine+Graphics Synthesizer (PlayStation 2) – 2003[100]
- IBM PowerPC G5 970FX – 2004
- Elpida Memory's 90 nm DDR2 SDRAM process – 2005
- IBM PowerPC G5 970MP – 2005
- IBM PowerPC G5 970GX – 2005
- IBM Waternoose Xbox 360 Processor – 2005
- IBM–Sony–Toshiba Cell processor – 2005
- Intel Pentium 4 Prescott – 2004-02
- Intel Celeron D Prescott-256 – 2004-05
- Intel Pentium M Dothan – 2004-05
- Intel Celeron M Dothan-1024 – 2004-08
- Intel Xeon Nocona, Irwindale, Cranford, Potomac, Paxville – 2004-06
- Intel Pentium D Smithfield – 2005-05
- AMD Athlon 64 Winchester, Venice, San Diego, Orleans – 2004-10
- AMD Athlon 64 X2 Manchester, Toledo, Windsor – 2005-05
- AMD Sempron Palermo and Manila – 2004-08
- AMD Turion 64 Lancaster and Richmond – 2005-03
- AMD Turion 64 X2 Taylor and Trinidad – 2006-05
- AMD Opteron Venus, Troy, and Athens – 2005-08
- AMD Dual-core Opteron Denmark, Italy, Egypt, Santa Ana, and Santa Rosa
- VIA C7 – 2005-05
- Loongson (Godson) 2Е STLS2E02 – 2007-04
- Loongson (Godson) 2F STLS2F02 – 2008-07
- MCST-4R – 2010-12
- Elbrus-2C+ – 2011-11
Processors using 65 nm manufacturing technology
- Sony–Toshiba EE+GS (PStwo)[102] – 2005
- Intel Pentium 4 (Cedar Mill) – 2006-01-16
- Intel Pentium D 900-series – 2006-01-16
- Intel Celeron D (Cedar Mill cores) – 2006-05-28
- Intel Core – 2006-01-05
- Intel Core 2 – 2006-07-27
- Intel Xeon (Sossaman) – 2006-03-14
- AMD Athlon 64 series (starting from Lima) – 2007-02-20
- AMD Turion 64 X2 series (starting from Tyler) – 2007-05-07
- AMD Phenom series
- IBM's Cell Processor – PlayStation 3 – 2007-11-17
- IBM's z10
- Microsoft Xbox 360 "Falcon" CPU – 2007–09
- Microsoft Xbox 360 "Opus" CPU – 2008
- Microsoft Xbox 360 "Jasper" CPU – 2008–10
- Microsoft Xbox 360 "Jasper" GPU – 2008–10
- Sun UltraSPARC T2 – 2007–10
- AMD Turion Ultra – 2008-06[103]
- TI OMAP 3 Family[104] – 2008-02
- VIA Nano – 2008-05
- Loongson – 2009
- NVIDIA GeForce 8800GT GPU – 2007
Processors using 45 nm technology
- Matsushita released the 45 nm Uniphier in 2007.[105]
- Wolfdale, Yorkfield, Yorkfield XE and Penryn are Intel cores sold under the Core 2 brand.
- Intel Core i7 series processors, i5 750 (Lynnfield and Clarksfield)
- Pentium Dual-Core Wolfdale-3M are current[when?] Intel mainstream dual core sold under the Pentium brand.
- Diamondville, Pineview are current[when?] Intel cores with hyper-threading sold under the Intel Atom brand.
- AMD Deneb (Phenom II) and Shanghai (Opteron) Quad-Core Processors, Regor (Athlon II) dual core processors [4], Caspian (Turion II) mobile dual core processors.
- AMD (Phenom II) "Thuban" Six-Core Processor (1055T)
- Xenon in the Xbox 360 S model.
- Sony–Toshiba Cell Broadband Engine in PlayStation 3 Slim model – September 2009.
- Samsung S5PC110, as known as Hummingbird.
- Texas Instruments OMAP 36xx.
- IBM POWER7 and z196
- Fujitsu SPARC64 VIIIfx series
- Espresso (microprocessor) Wii U CPU
Chips using 32 nm technology
- Toshiba produced commercial 32 Gb NAND flash memory chips with the 32 nm process in 2009.[106]
- Intel Core i3 and i5 processors, released in January 2010[107]
- Intel 6-core processor, codenamed Gulftown[108]
- Intel i7-970, was released in late July 2010, priced at approximately US$900
- AMD FX Series processors, codenamed Zambezi and based on AMD's Bulldozer architecture, were released in October 2011. The technology used a 32 nm SOI process, two CPU cores per module, and up to four modules, ranging from a quad-core design costing approximately US$130 to a $280 eight-core design.
- Ambarella Inc. announced the availability of the A7L system-on-a-chip circuit for digital still cameras, providing 1080p60 high-definition video capabilities in September 2011[109]
Chips using 24–28 nm technology
- SK Hynix announced that it could produce a 26 nm flash chip with 64 Gb capacity; Intel Corp. and Micron Technology had by then already developed the technology themselves. Announced in 2010.[110]
- Toshiba announced that it was shipping 24 nm flash memory NAND devices on August 31, 2010.[111]
- In 2016 MCST's 28 nm processor Elbrus-8S went for serial production.[112][113]
Chips using 22 nm technology
- Intel Core i7 and Intel Core i5 processors based on Intel's Ivy Bridge 22 nm technology for series 7 chip-sets went on sale worldwide on April 23, 2012.[114]
Chips using 20 nm technology
- Samsung Electronics began mass production of 64 Gb NAND flash memory chips using a 20 nm process in 2010.[115]
Chips using 16 nm technology
Chips using 14 nm technology
- Intel Core i7 and Intel Core i5 processors based on Intel's Broadwell 14 nm technology was launched in January 2015.[117]
- AMD Ryzen processors based on AMD's Zen or Zen+ architectures and which uses 14 nm FinFET technology.[118]
Chips using 10 nm technology
- Samsung announced that it had begun mass production of multi-level cell (MLC) flash memory chips using a 10 nm process in 2013.[119] On 17 October 2016, Samsung Electronics announced mass production of SoC chips at 10 nm.[120]
- TSMC began commercial production of 10 nm chips in early 2016, before moving onto mass production in early 2017.[121]
- Samsung began shipping Galaxy S8 smartphone in April 2017 using the company's 10 nm processor.[122]
- Apple delivered second-generation iPad Pro tablets powered with TSMC-produced Apple A10X chips using the 10 nm FinFET process in June 2017.[123]
Chips using 7 nm technology
- TSMC began risk production of 256 Mbit SRAM memory chips using a 7 nm process in April 2017.[124]
- Samsung and TSMC began mass production of 7 nm devices in 2018.[125]
- Apple A12 and Huawei Kirin 980 mobile processors, both released in 2018, use 7 nm chips manufactured by TSMC.[126]
- AMD began using TSMC 7 nm starting with the Vega 20 GPU in November 2018,[127] with Zen 2-based CPUs and APUs from July 2019,[128] and for both PlayStation 5 [129] and Xbox Series X/S [130] consoles’ APUs, released both in November 2020.
Chips using 5 nm technology
- Samsung began production of 5 nm chips (5LPE) in late 2018.[131]
- TSMC began production of 5 nm chips (CLN5FF) in April 2019.[132]
Chips using 3 nm technology
- TSMC have announced plans to release 3 nm devices during 2021–2022.[133][134]
- Samsung Electronics have begun risk production of 3 nm GAAFET transistors in June of 2022.[135]
See also
References
- ^ أ ب ت "Angstrom". Collins English Dictionary. Retrieved 2019-03-02.
- ^ Sze, Simon M. (2002). Semiconductor Devices: Physics and Technology (PDF) (2nd ed.). Wiley. p. 4. ISBN 0-471-33372-7.
- ^ Atalla, Mohamed M.; Kahng, Dawon (June 1960). "Silicon–silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference. Carnegie Mellon University Press.
- ^ Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. p. 164. ISBN 9780521873024.
- ^ Sah, Chih-Tang; Leistiko, Otto; Grove, A. S. (May 1965). "Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces". IEEE Transactions on Electron Devices. 12 (5): 248–254. Bibcode:1965ITED...12..248L. doi:10.1109/T-ED.1965.15489.
- ^ (December 1972) "1972 International Electron Devices Meeting" in 1972 International Electron Devices Meeting.: 168–170. doi:10.1109/IEDM.1972.249198.
- ^ أ ب Hori, Ryoichi; Masuda, Hiroo; Minato, Osamu; Nishimatsu, Shigeru; Sato, Kikuji; Kubo, Masaharu (September 1975). "Short Channel MOS-IC Based on Accurate Two Dimensional Device Design". Japanese Journal of Applied Physics. 15 (S1): 193. doi:10.7567/JJAPS.15S1.193. ISSN 1347-4065.
- ^ Critchlow, D. L. (2007). "Recollections on MOSFET Scaling". IEEE Solid-State Circuits Society Newsletter. 12 (1): 19–22. doi:10.1109/N-SSC.2007.4785536.
- ^ "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
- ^ "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
- ^ أ ب "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
- ^ Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 – Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609.
- ^ Dennard, Robert H.; Gaensslen, F. H.; Yu, Hwa-Nien; Rideout, V. L.; Bassous, E.; LeBlanc, A. R. (October 1974). "Design of ion-implanted MOSFET's with very small physical dimensions" (PDF). IEEE Journal of Solid-State Circuits. 9 (5): 256–268. Bibcode:1974IJSSC...9..256D. CiteSeerX 10.1.1.334.2417. doi:10.1109/JSSC.1974.1050511. S2CID 283984.
- ^ (February 1976) "1976 IEEE International Solid-State Circuits Conference. Digest of Technical Papers" in 1976 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XIX: 54–55. doi:10.1109/ISSCC.1976.1155515.
- ^ "Intel Microprocessor Quick Reference Guide". Intel. Retrieved 27 June 2019.
- ^ Hunter, William R.; Ephrath, L. M.; Cramer, Alice; Grobman, W. D.; Osburn, C. M.; Crowder, B. L.; Luhn, H. E. (April 1979). "1 /spl mu/m MOSFET VLSI technology. V. A single-level polysilicon technology using electron-beam lithography". IEEE Journal of Solid-State Circuits. 14 (2): 275–281. doi:10.1109/JSSC.1979.1051174. S2CID 26389509.
- ^ Kobayashi, Toshio; Horiguchi, Seiji; Kiuchi, K. (December 1984). "Deep-submicron MOSFET characteristics with 5 nm gate oxide". 1984 International Electron Devices Meeting. pp. 414–417. doi:10.1109/IEDM.1984.190738. S2CID 46729489.
- ^ Kobayashi, Toshio; Horiguchi, Seiji; Miyake, M.; Oda, M.; Kiuchi, K. (December 1985). "Extremely high transconductance (Above 500 mS/Mm) MOSFET with 2.5 nm gate oxide". 1985 International Electron Devices Meeting. pp. 761–763. doi:10.1109/IEDM.1985.191088. S2CID 22309664.
- ^ Chou, Stephen Y.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1985). "Observation of electron velocity overshoot in sub-100-nm-channel MOSFET's in Silicon". IEEE Electron Device Letters. 6 (12): 665–667. Bibcode:1985IEDL....6..665C. doi:10.1109/EDL.1985.26267. S2CID 28493431.
- ^ أ ب Chou, Stephen Y.; Smith, Henry I.; Antoniadis, Dimitri A. (January 1986). "Sub‐100‐nm channel‐length transistors fabricated using x‐ray lithography". Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 4 (1): 253–255. Bibcode:1986JVSTB...4..253C. doi:10.1116/1.583451. ISSN 0734-211X.
- ^ Kobayashi, Toshio; Miyake, M.; Deguchi, K.; Kimizuka, M.; Horiguchi, Seiji; Kiuchi, K. (1987). "Subhalf-micrometer p-channel MOSFET's with 3.5-nm gate Oxide fabricated using X-ray lithography". IEEE Electron Device Letters. 8 (6): 266–268. Bibcode:1987IEDL....8..266M. doi:10.1109/EDL.1987.26625. S2CID 38828156.
- ^ Ono, Mizuki; Saito, Masanobu; Yoshitomi, Takashi; Fiegna, Claudio; Ohguro, Tatsuya; Iwai, Hiroshi (December 1993). "Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions". Proceedings of IEEE International Electron Devices Meeting. pp. 119–122. doi:10.1109/IEDM.1993.347385. ISBN 0-7803-1450-6. S2CID 114633315.
- ^ Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio; Ochiai, Yukinori; Fujita, Jun'ichi; Matsui, Shinji; Sone, Jun'ichi (1997). "Proposal of Pseudo Source and Drain MOSFETs for Evaluating 10-nm Gate MOSFETs". Japanese Journal of Applied Physics (in الإنجليزية). 36 (3S): 1569. Bibcode:1997JaJAP..36.1569K. doi:10.1143/JJAP.36.1569. ISSN 1347-4065. S2CID 250846435.
- ^ Ahmed, Khaled Z.; Ibok, Effiong E.; Song, Miryeong; Yeap, Geoffrey; Xiang, Qi; Bang, David S.; Lin, Ming-Ren (1998). "Performance and reliability of sub-100 nm MOSFETs with ultra thin direct tunneling gate oxides". 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216). pp. 160–161. doi:10.1109/VLSIT.1998.689240. ISBN 0-7803-4770-6. S2CID 109823217.
- ^ Ahmed, Khaled Z.; Ibok, Effiong E.; Song, Miryeong; Yeap, Geoffrey; Xiang, Qi; Bang, David S.; Lin, Ming-Ren (1998). "Sub-100 nm nMOSFETs with direct tunneling thermal, nitrous and nitric oxides". 56th Annual Device Research Conference Digest (Cat. No.98TH8373). pp. 10–11. doi:10.1109/DRC.1998.731099. ISBN 0-7803-4995-4. S2CID 1849364.
- ^ Doris, Bruce B.; Dokumaci, Omer H.; Ieong, Meikei K.; Mocuta, Anda; Zhang, Ying; Kanarsky, Thomas S.; Roy, R. A. (December 2002). "Extreme scaling with ultra-thin Si channel MOSFETs". Digest. International Electron Devices Meeting. pp. 267–270. doi:10.1109/IEDM.2002.1175829. ISBN 0-7803-7462-2. S2CID 10151651.
- ^ أ ب ت Schwierz, Frank; Wong, Hei; Liou, Juin J. (2010). Nanometer CMOS (in الإنجليزية). Pan Stanford Publishing. p. 17. ISBN 9789814241083.
- ^ "IBM claims world's smallest silicon transistor – TheINQUIRER". Theinquirer.net. 2002-12-09. Archived from the original on May 31, 2011. Retrieved 7 December 2017.
{{cite web}}
: CS1 maint: unfit URL (link) - ^ أ ب Wakabayashi, Hitoshi; Yamagami, Shigeharu; Ikezawa, Nobuyuki; Ogura, Atsushi; Narihiro, Mitsuru; Arai, K.; Ochiai, Y.; Takeuchi, K.; Yamamoto, T.; Mogami, T. (December 2003). "Sub-10-nm planar-bulk-CMOS devices using lateral junction control". IEEE International Electron Devices Meeting 2003. pp. 20.7.1–20.7.3. doi:10.1109/IEDM.2003.1269446. ISBN 0-7803-7872-5. S2CID 2100267.
- ^ "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved 6 July 2019.
- ^ (February 1963) "Nanowatt logic using field-effect metal–oxide semiconductor triodes" in 1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. VI: 32–33. doi:10.1109/ISSCC.1963.1157450.
- ^ أ ب ت Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588.
- ^ (December 1976) "1976 International Electron Devices Meeting" in 1976 International Electron Devices Meeting.: 209–213. doi:10.1109/IEDM.1976.189021.
- ^ "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved 5 July 2019.
- ^ (February 1978) "1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers" in 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XXI: 110–111. doi:10.1109/ISSCC.1978.1155749.
- ^ Masuhara, Toshiaki; Minato, Osamu; Sakai, Yoshi; Sasaki, Toshio; Kubo, Masaharu; Yasui, Tokumasa (September 1978). "Short Channel Hi-CMOS Device and Circuits". ESSCIRC 78: 4th European Solid State Circuits Conference – Digest of Technical Papers: 131–132.
- ^ أ ب ت ث ج ح خ د Gealow, Jeffrey Carl (10 August 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved 25 June 2019 – via CORE.
- ^ Chwang, R. J. C.; Choi, M.; Creek, D.; Stern, S.; Pelley, P. H.; Schutz, Joseph D.; Bohr, M. T.; Warkentin, P. A.; Yu, K. (February 1983). "A 70ns high density CMOS DRAM". 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXVI. pp. 56–57. doi:10.1109/ISSCC.1983.1156456. S2CID 29882862.
- ^ Mano, Tsuneo; Yamada, J.; Inoue, Junichi; Nakajima, S. (February 1983). "Submicron VLSI memory circuits". 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXVI. pp. 234–235. doi:10.1109/ISSCC.1983.1156549. S2CID 42018248.
- ^ Hu, G. J.; Taur, Yuan; Dennard, Robert H.; Terman, L. M.; Ting, Chung-Yu (December 1983). "A self-aligned 1-µm CMOS technology for VLSI". 1983 International Electron Devices Meeting. pp. 739–741. doi:10.1109/IEDM.1983.190615. S2CID 20070619.
- ^ Sumi, T.; Taniguchi, Tsuneo; Kishimoto, Mikio; Hirano, Hiroshige; Kuriyama, H.; Nishimoto, T.; Oishi, H.; Tetakawa, S. (1987). "A 60ns 4Mb DRAM in a 300mil DIP". 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXX. pp. 282–283. doi:10.1109/ISSCC.1987.1157106. S2CID 60783996.
- ^ Mano, Tsuneo; Yamada, J.; Inoue, Junichi; Nakajima, S.; Matsumura, Toshiro; Minegishi, K.; Miura, K.; Matsuda, T.; Hashimoto, C.; Namatsu, H. (1987). "Circuit technologies for 16Mb DRAMs". 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXX. pp. 22–23. doi:10.1109/ISSCC.1987.1157158. S2CID 60984466.
- ^ Hanafi, Hussein I.; Dennard, Robert H.; Taur, Yuan; Haddad, Nadim F.; Sun, J. Y. C.; Rodriguez, M. D. (September 1987). "0.5 μm CMOS Device Design and Characterization". ESSDERC '87: 17th European Solid State Device Research Conference: 91–94.
- ^ Kasai, Naoki; Endo, Nobuhiro; Kitajima, Hiroshi (December 1987). "0.25 µm CMOS technology using P+polysilicon gate PMOSFET". 1987 International Electron Devices Meeting. pp. 367–370. doi:10.1109/IEDM.1987.191433. S2CID 9203005.
- ^ Inoue, M.; Kotani, H.; Yamada, T.; Yamauchi, Hiroyuki; Fujiwara, A.; Matsushima, J.; Akamatsu, Hironori; Fukumoto, M.; Kubota, M.; Nakao, I.; Aoi (1988). "A 16mb Dram with an Open Bit-Line Architecture". 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers. pp. 246–. doi:10.1109/ISSCC.1988.663712. S2CID 62034618.
- ^ Shahidi, Ghavam G.; Davari, Bijan; Taur, Yuan; Warnock, James D.; Wordeman, Matthew R.; McFarland, P. A.; Mader, S. R.; Rodriguez, M. D. (December 1990). "Fabrication of CMOS on ultrathin SOI obtained by epitaxial lateral overgrowth and chemical-mechanical polishing". International Technical Digest on Electron Devices: 587–590. doi:10.1109/IEDM.1990.237130. S2CID 114249312.
- ^ أ ب ت ث ج ح خ د ذ ر ز س ش ص "Memory". STOL (Semiconductor Technology Online). Retrieved 25 June 2019.
- ^ "0.18-micron Technology". TSMC. Retrieved 30 June 2019.
- ^ "NEC test-produces world's smallest transistor". Thefreelibrary.com. Retrieved 7 December 2017.
- ^ Sekigawa, Toshihiro; Hayashi, Yutaka (August 1984). "Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate". Solid-State Electronics. 27 (8): 827–828. Bibcode:1984SSEle..27..827S. doi:10.1016/0038-1101(84)90036-4. ISSN 0038-1101.
- ^ Koike, Hanpei; Nakagawa, Tadashi; Sekigawa, Toshiro; Suzuki, E.; Tsutsumi, Toshiyuki (23 February 2003). "Primary Consideration on Compact Modeling of DG MOSFETs with Four-terminal Operation Mode" (PDF). TechConnect Briefs. 2 (2003): 330–333. S2CID 189033174. Archived from the original (PDF) on 26 September 2019.
- ^ Davari, Bijan; Chang, Wen-Hsing; Wordeman, Matthew R.; Oh, C. S.; Taur, Yuan; Petrillo, Karen E.; Rodriguez, M. D. (December 1988). "A high performance 0.25 mu m CMOS technology". Technical Digest., International Electron Devices Meeting. pp. 56–59. doi:10.1109/IEDM.1988.32749. S2CID 114078857.
- ^ Davari, Bijan; Wong, C. Y.; Sun, Jack Yuan-Chen; Taur, Yuan (December 1988). "Doping of n/Sup +/ And p/Sup +/ Polysilicon in a dual-gate CMOS process". Technical Digest., International Electron Devices Meeting. pp. 238–241. doi:10.1109/IEDM.1988.32800. S2CID 113918637.
- ^ Masuoka, Fujio; Takato, Hiroshi; Sunouchi, Kazumasa; Okabe, N.; Nitayama, Akihiro; Hieda, K.; Horiguchi, Fumio (December 1988). "High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs". Technical Digest., International Electron Devices Meeting. pp. 222–225. doi:10.1109/IEDM.1988.32796. S2CID 114148274.
- ^ Brozek, Tomasz (2017). Micro- and Nanoelectronics: Emerging Device Challenges and Solutions. CRC Press. p. 117. ISBN 9781351831345.
- ^ Ishikawa, Fumitaro; Buyanova, Irina (2017). Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications. CRC Press. p. 457. ISBN 9781315340722.
- ^ Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. p. 11. ISBN 9780387717517.
- ^ Hisamoto, Digh; Kaga, Toru; Kawamoto, Yoshifumi; Takeda, Eiji (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET". International Technical Digest on Electron Devices Meeting. pp. 833–836. doi:10.1109/IEDM.1989.74182. S2CID 114072236.
- ^ "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Retrieved 4 July 2019.
- ^ أ ب ت Tsu‐Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Archived from the original on 28 May 2016. Retrieved 9 July 2019.
- ^ Hisamoto, Digh; Hu, Chenming; Liu, Tsu-Jae King; Bokor, Jeffrey; Lee, Wen-Chin; Kedzierski, Jakub; Anderson, Erik; Takeuchi, Hideki; Asano, Kazuya (December 1998). "A folded-channel MOSFET for deep-sub-tenth micron era". International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217). pp. 1032–1034. doi:10.1109/IEDM.1998.746531. ISBN 0-7803-4774-9. S2CID 37774589.
- ^ Hu, Chenming; Choi, Yang‐Kyu; Lindert, N.; Xuan, P.; Tang, S.; Ha, D.; Anderson, E.; Bokor, J.; Tsu-Jae King, Liu (December 2001). "Sub-20 nm CMOS FinFET technologies". International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). pp. 19.1.1–19.1.4. doi:10.1109/IEDM.2001.979526. ISBN 0-7803-7050-3. S2CID 8908553.
- ^ Ahmed, Shibly; Bell, Scott; Tabery, Cyrus; Bokor, Jeffrey; Kyser, David; Hu, Chenming; Liu, Tsu-Jae King; Yu, Bin; Chang, Leland (December 2002). "FinFET scaling to 10 nm gate length" (PDF). Digest. International Electron Devices Meeting. pp. 251–254. CiteSeerX 10.1.1.136.3757. doi:10.1109/IEDM.2002.1175825. ISBN 0-7803-7462-2. S2CID 7106946.
- ^ Lee, Hyunjin; Choi, Yang-Kyu; Yu, Lee-Eun; Ryu, Seong-Wan; Han, Jin-Woo; Jeon, K.; Jang, D.Y.; Kim, Kuk-Hwan; Lee, Ju-Hyun; et al. (June 2006). "Sub-5nm All-Around Gate FinFET for Ultimate Scaling". 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. pp. 58–59. doi:10.1109/VLSIT.2006.1705215. hdl:10203/698. ISBN 978-1-4244-0005-8. S2CID 26482358.
- ^ Still Room at the Bottom (nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology ), 1 April 2006, http://www.highbeam.com/doc/1G1-145838158.html
- ^ Weimer, Paul K. (June 1962). "The TFT A New Thin-Film Transistor". Proceedings of the IRE. 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190. ISSN 0096-8390. S2CID 51650159.
- ^ Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if. ISSN 1064-8208.
- ^ Ye, Peide D.; Xuan, Yi; Wu, Yanqing; Xu, Min (2010). "Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model". In Oktyabrsky, Serge; Ye, Peide (eds.). Fundamentals of III-V Semiconductor MOSFETs. Springer Science & Business Media. pp. 173–194. doi:10.1007/978-1-4419-1547-4_7. ISBN 978-1-4419-1547-4.
- ^ Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH‐GAIN InAs THIN‐FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi:10.1063/1.1754740. ISSN 0003-6951.
- ^ Woodall, Jerry M. (2010). Fundamentals of III-V Semiconductor MOSFETs. Springer Science & Business Media. pp. 2–3. ISBN 9781441915474.
- ^ Kahng, Dawon; Sze, Simon Min (July–August 1967). "A floating gate and its application to memory devices". The Bell System Technical Journal. 46 (6): 1288–1295. Bibcode:1967ITED...14Q.629K. doi:10.1002/j.1538-7305.1967.tb01738.x.
- ^ Wegener, H. A. R.; Lincoln, A. J.; Pao, H. C.; O'Connell, M. R.; Oleksiak, R. E.; Lawrence, H. (October 1967). "The variable threshold transistor, a new electrically-alterable, non-destructive read-only storage device". 1967 International Electron Devices Meeting. Vol. 13. p. 70. doi:10.1109/IEDM.1967.187833.
- ^ Lin, Hung Chang; Iyer, Ramachandra R. (July 1968). "A Monolithic Mos-Bipolar Audio Amplifier". IEEE Transactions on Broadcast and Television Receivers. 14 (2): 80–86. doi:10.1109/TBTR1.1968.4320132.
- ^ أ ب Alvarez, Antonio R. (1990). "Introduction to BiCMOS". BiCMOS Technology and Applications. Springer Science & Business Media. pp. 1–20 (2). doi:10.1007/978-1-4757-2029-7_1. ISBN 9780792393849.
- ^ (October 1968) "1968 International Electron Devices Meeting" in 1968 International Electron Devices Meeting.: 22–24. doi:10.1109/IEDM.1968.187949.
- ^ أ ب "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
- ^ Oxner, E. S. (1988). Fet Technology and Application. CRC Press. p. 18. ISBN 9780824780500.
- ^ Tarui, Y.; Hayashi, Y.; Sekigawa, Toshihiro (September 1969). "Diffusion Selfaligned MOST; A New Approach for High Speed Device". Extended Abstracts of the 1969 Conference on Solid State Devices. doi:10.7567/SSDM.1969.4-1. S2CID 184290914.
{{cite book}}
:|journal=
ignored (help) - ^ (December 1972) "1972 International Electron Devices Meeting" in 1972 International Electron Devices Meeting.: 24–26. doi:10.1109/IEDM.1972.249241.
- ^ Bergveld, P. (January 1970). "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements". IEEE Transactions on Biomedical Engineering. BME-17 (1): 70–71. doi:10.1109/TBME.1970.4502688. PMID 5441220.
- ^ Chris Toumazou; Pantelis Georgiou (December 2011). "40 years of ISFET technology: From neuronal sensing to DNA sequencing". Electronics Letters. doi:10.1049/el.2011.3231. Retrieved 13 May 2016.
- ^ (October 1970) "DSA enhancement – Depletion MOS IC" in 1970 International Electron Devices Meeting.: 110. doi:10.1109/IEDM.1970.188299.
- ^ Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177–8, 406. ISBN 9780080508047.
- ^ Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. xxviii, 5–12. ISBN 9781455731534.
- ^ Higuchi, H.; Kitsukawa, Goro; Ikeda, Takahide; Nishio, Y.; Sasaki, N.; Ogiue, Katsumi (December 1984). "Performance and structures of scaled-down bipolar devices merged with CMOSFETs". 1984 International Electron Devices Meeting. pp. 694–697. doi:10.1109/IEDM.1984.190818. S2CID 41295752.
- ^ Deguchi, K.; Komatsu, Kazuhiko; Miyake, M.; Namatsu, H.; Sekimoto, M.; Hirata, K. (1985). "Step-and-Repeat X-ray/Photo Hybrid Lithography for 0.3 μm Mos Devices". 1985 Symposium on VLSI Technology. Digest of Technical Papers: 74–75.
- ^ Momose, H.; Shibata, Hideki; Saitoh, S.; Miyamoto, Jun-ichi; Kanzaki, K.; Kohyama, Susumu (1985). "1.0-/spl mu/m n-Well CMOS/Bipolar Technology". IEEE Journal of Solid-State Circuits. 20 (1): 137–143. Bibcode:1985IJSSC..20..137M. doi:10.1109/JSSC.1985.1052286. S2CID 37353920.
- ^ Lee, Han-Sheng; Puzio, L.C. (November 1986). "The electrical properties of subquarter-micrometer gate-length MOSFET's". IEEE Electron Device Letters. 7 (11): 612–614. Bibcode:1986IEDL....7..612H. doi:10.1109/EDL.1986.26492. S2CID 35142126.
- ^ Shahidi, Ghavam G.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1986). "Electron velocity overshoot at 300 K and 77 K in silicon MOSFETs with submicron channel lengths". 1986 International Electron Devices Meeting. pp. 824–825. doi:10.1109/IEDM.1986.191325. S2CID 27558025.
- ^ Davari, Bijan; Ting, Chung-Yu; Ahn, Kie Y.; Basavaiah, S.; Hu, Chao-Kun; Taur, Yuan; Wordeman, Matthew R.; Aboelfotoh, O. (May 1987). "Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide". 1987 Symposium on VLSI Technology. Digest of Technical Papers: 61–62.
- ^ Havemann, Robert H.; Eklund, R. E.; Tran, Hiep V.; Haken, R. A.; Scott, D. B.; Fung, P. K.; Ham, T. E.; Favreau, D. P.; Virkus, R. L. (December 1987). "An 0.8 µm 256K BiCMOS SRAM technology". 1987 International Electron Devices Meeting. pp. 841–843. doi:10.1109/IEDM.1987.191564. S2CID 40375699.
- ^ Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio; Ochiai, Yukinori; Fujita, Jun-ichi; Matsui, Shinji; Sone, J. (1997). "Transistor operations in 30-nm-gate-length EJ-MOSFETs". 1997 55th Annual Device Research Conference Digest. pp. 14–15. doi:10.1109/DRC.1997.612456. ISBN 0-7803-3911-8. S2CID 38105606.
- ^ Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio (12 June 2000). "Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors". Applied Physics Letters. 76 (25): 3810–3812. Bibcode:2000ApPhL..76.3810K. doi:10.1063/1.126789. ISSN 0003-6951.
- ^ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588.
The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm, 2 memory cell size, a die size just under 10 mm2, and sold for around $21.
- ^ أ ب "History of the Intel Microprocessor - Listoid". Archived from the original on 2015-04-27. Retrieved 2019-07-02.
- ^ أ ب ت "Design case history: the Commodore 64" (PDF). IEEE Spectrum. Retrieved 1 September 2019.
- ^ Mueller, S (2006-07-21). "Microprocessors from 1971 to the Present". informIT. Retrieved 2012-05-11.
- ^ "Amiga Manual: Amiga 3000+ System Specification 1991". 17 July 1991.
- ^ "Propeller I semiconductor process technology? Is it 350nm or 180nm?". Archived from the original on 2012-07-10. Retrieved 2012-09-10.
- ^ أ ب "Emotion Engine and Graphics Synthesizer Used in the Core of PlayStation Become One Chip" (PDF) (Press release). Sony. 21 April 2003. Retrieved 26 June 2019.
- ^ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
- ^ "ソニー、65nm対応の半導体設備を導入。3年間で2,000億円の投資". pc.watch.impress.co.jp. Archived from the original on 2016-08-13.
- ^ TG Daily – AMD preps 65 nm Turion X2 processors Archived 2007-09-13 at the Wayback Machine
- ^ http://focus.ti.com/pdfs/wtbu/ti_omap3family.pdf[bare URL PDF]
- ^ "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved 2 July 2019.
- ^ "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. 11 February 2009. Retrieved 21 June 2019.
- ^ "Intel Debuts 32-NM Westmere Desktop Processors". InformationWeek, 7 January 2010. Retrieved 2011-12-17.
- ^ Cangeloso, Sal (February 4, 2010). "Intel's 6-core 32nm processors arriving soon". Geek.com. Archived from the original on March 30, 2012. Retrieved November 11, 2011.
- ^ "Ambarella A7L Enables the Next Generation of Digital Still Cameras with 1080p60 Fluid Motion Video". News release. September 26, 2011. Retrieved November 11, 2011.
- ^ Article reporting Hynix 26 nm technology announcement
- ^ Toshiba launches 24nm process NAND flash memory
- ^ "The Russian 28-nm processor "Elbrus-8C" will go into production in 2016". Retrieved 7 September 2020.
- ^ "Another domestic data storage system on "Elbrus" has been created". 25 August 2020. Retrieved 7 September 2020.
- ^ Intel launches Ivy Bridge...
- ^ "History". Samsung Electronics. Samsung. Retrieved 19 June 2019.
- ^ "16/12nm Technology". TSMC. Retrieved 30 June 2019.
- ^ EETimes Intel Rolls 14nm Broadwell in Vegas
- ^ "AMD Zen Architecture Overview". Tech4Gizmos (in الإنجليزية البريطانية). 2015-12-04. Retrieved 2019-05-01.
- ^ "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. 11 April 2013. Retrieved 21 June 2019.
- ^ Samsung Starts Industry's First Mass Production of System-on-Chip with 10-Nanometer FinFET Technology, Oct 2016, https://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology
- ^ "10nm Technology". TSMC. Retrieved 30 June 2019.
- ^ "Latest Samsung Galaxy Smartphones | Mobile Phones".
- ^ techinsights.com. "10nm Rollout Marching Right Along". www.techinsights.com. Archived from the original on 2017-08-03. Retrieved 2017-06-30.
- ^ "7nm Technology". TSMC. Retrieved 30 June 2019.
- ^ TSMC ramping up 7nm chip production Monica Chen, Hsinchu; Jessie Shen, DIGITIMES Friday 22 June 2018
- ^ "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget (in الإنجليزية الأمريكية). Retrieved 2018-09-20.
- ^ Smith, Ryan. "AMD Announces Radeon Instinct MI60 & MI50 Accelerators: Powered By 7nm Vega". www.anandtech.com. Retrieved 2021-01-09.
- ^ Cutress, Ian. "AMD Ryzen 3000 Announced: Five CPUs, 12 Cores for $499, Up to 4.6 GHz, PCIe 4.0, Coming 7/7". www.anandtech.com. Retrieved 2021-01-09.
- ^ Smith, Ryan. "Sony Teases Next-Gen PlayStation: Custom AMD Chip with Zen 2 CPU & Navi GPU, SSD Too". www.anandtech.com. Retrieved 2021-01-09.
- ^ Howse, Brett. "Xbox at E3 2019: Xbox Project Scarlett Console Launching Holiday 2020". www.anandtech.com. Retrieved 2021-01-09.
- ^ Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". www.anandtech.com. Retrieved 2019-05-31.
- ^ TSMC and OIP Ecosystem Partners Deliver Industry's First Complete Design Infrastructure for 5nm Process Technology, TSMC, 3 April 2019, https://www.tsmc.com/tsmcdotcom/PRListingNewsAction.do?action=detail&language=E&newsid=THPGWQTHTH
- ^ "TSMC Plans New Fab for 3nm". EE Times. 12 December 2016. Retrieved 26 September 2019.
- ^ Armasu, Lucian (11 January 2019), Samsung Plans Mass Production of 3nm GAAFET Chips in 2021, https://www.tomshardware.com/news/samsung-3nm-gaafet-production-2021,38426.html
- ^ Smith, Ryan. "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins". www.anandtech.com. Retrieved 2022-11-08.
- CS1 maint: unfit URL
- CS1 errors: periodical ignored
- All articles with bare URLs for citations
- Articles with bare URLs for citations from March 2022
- Articles with PDF format bare URLs for citations
- CS1 الإنجليزية البريطانية-language sources (en-gb)
- CS1 الإنجليزية الأمريكية-language sources (en-us)
- Short description is different from Wikidata
- Articles with hatnote templates targeting a nonexistent page
- Vague or ambiguous time from April 2018
- International Technology Roadmap for Semiconductors lithography nodes
- MOSFETs