نيتريد الغاليوم

(تم التحويل من Gallium nitride)
Gallium nitride
GaNcrystal.jpg
GaN Wurtzite polyhedra.png
الأسماء
اسم أيوپاك
Gallium nitride
المُعرِّفات
رقم CAS
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.042.830 Edit this at Wikidata
UNII
الخصائص
الصيغة الجزيئية GaN
كتلة مولية 83.730 g/mol[1]
المظهر yellow powder
الكثافة 6.1 g/cm3[1]
نقطة الانصهار
قابلية الذوبان في الماء Insoluble[5]
الفجوة الحزمية 3.4 eV (300 K, direct)
حركية الإلكترون 1500 cm2/(V·s) (300 K)[2]
التوصيل الحراري 1.3 W/(cm·K) (300 K)[3]
معامل الانكسار (nD) 2.429
البنية
البنية البلورية Wurtzite
الزمرة الفراغية C6v4-P63mc
ثابت العقد a = 3.186 Å, c = 5.186 Å[6]
هندسة
إحداثية
Tetrahedral
الكيمياء الحرارية
الإنتالپية المعيارية
للتشكل
ΔfHo298
−110.2 kJ/mol[7]
المخاطر
نقطة الوميض غير قابل للاشتعال
مركبات ذا علاقة
فوسفيد الگاليوم
زرنيخيد الگاليوم
أنتيمونيد الگاليوم
نيتريد البورون
نيتريد الألومنيوم
نيتريد الإنديوم
مركـّبات ذات علاقة
زرنيخيد الألومنيوم گاليوم
زرنيخيد الإنديوم گاليوم
فوسفيد زرنيخيد الگاليوم
نيتريد الألومنيوم گاليوم
نيتريد الإنديوم گاليوم
ما لم يُذكر غير ذلك، البيانات المعطاة للمواد في حالاتهم العيارية (عند 25 °س [77 °ف]، 100 kPa).
YesY verify (what is YesYX mark.svgN ?)
مراجع الجدول

نيتريد الگاليوم الثلاثي Gallium nitride is a binary III/V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords it special properties for applications in optoelectronic,[8][9] high-power and high-frequency devices. For example, GaN is the substrate which makes violet (405 nm) laser diodes possible, without requiring nonlinear optical frequency-doubling.

Its sensitivity to ionizing radiation is low (like other group III nitrides), making it a suitable material for solar cell arrays for satellites. Military and space applications could also benefit as devices have shown stability in radiation environments.[10]

Because GaN transistors can operate at much higher temperatures and work at much higher voltages than gallium arsenide (GaAs) transistors, they make ideal power amplifiers at microwave frequencies. In addition, GaN offers promising characteristics for THz devices.[11] Due to high power density and voltage breakdown limits GaN is also emerging as a promising candidate for 5G cellular base station applications.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الخواص

GaN crystal

GaN is a very hard (Knoop hardness 14.21 GPa[12]:4), mechanically stable wide-bandgap semiconductor material with high heat capacity and thermal conductivity.[13] In its pure form it resists cracking and can be deposited in thin film on sapphire or silicon carbide, despite the mismatch in their lattice constants.[13] GaN can be doped with silicon (Si) or with oxygen[14] to n-type and with magnesium (Mg) to p-type.[15] However, the Si and Mg atoms change the way the GaN crystals grow, introducing tensile stresses and making them brittle.[16] Gallium nitride compounds also tend to have a high dislocation density, on the order of 108 to 1010 defects per square centimeter.[17] The wide band-gap behavior of GaN is connected to specific changes in the electronic band structure, charge occupation and chemical bond regions.[18]

The U.S. Army Research Laboratory (ARL) provided the first measurement of the high field electron velocity in GaN in 1999.[19] Scientists at ARL experimentally obtained a peak steady-state velocity of 1.9 x 107 cm/s, with a transit time of 2.5 picoseconds, attained at an electric field of 225 kV/cm. With this information, the electron mobility was calculated, thus providing data for the design of GaN devices.


التحضير

GaN with a high crystalline quality can be obtained by depositing a buffer layer at low temperatures.[20] Such high-quality GaN led to the discovery of p-type GaN,[15] p-n junction blue/UV-LEDs[15] and room-temperature stimulated emission[21] (essential for laser action).[22] This has led to the commercialization of high-performance blue LEDs and long-lifetime violet-laser diodes, and to the development of nitride-based devices such as UV detectors and high-speed field-effect transistors.

LEDs

High-brightness GaN light-emitting diodes (LEDs) completed the range of primary colors, and made applications such as daylight visible full-color LED displays, white LEDs and blue laser devices possible. The first GaN-based high-brightness LEDs used a thin film of GaN deposited via metalorganic vapour-phase epitaxy (MOVPE) on sapphire. Other substrates used are zinc oxide, with lattice constant mismatch of only 2% and silicon carbide (SiC).[23] Group III nitride semiconductors are, in general, recognized as one of the most promising semiconductor families for fabricating optical devices in the visible short-wavelength and UV region.

Transistors

The very high breakdown voltages,[24] high electron mobility and saturation velocity of GaN has also made it an ideal candidate for high-power and high-temperature microwave applications, as evidenced by its high Johnson's figure of merit. Potential markets for high-power/high-frequency devices based on GaN include microwave radio-frequency power amplifiers (such as those used in high-speed wireless data transmission) and high-voltage switching devices for power grids. A potential mass-market application for GaN-based RF transistors is as the microwave source for microwave ovens, replacing the magnetrons currently used. The large band gap means that the performance of GaN transistors is maintained up to higher temperatures (~400 °C[25]) than silicon transistors (~150 °C[25]) because it lessens the effects of thermal generation of charge carriers that are inherent to any semiconductor. The first gallium nitride metal semiconductor field-effect transistors (GaN MESFET) were experimentally demonstrated in 1993[26] and they are being actively developed.

In 2010, the first enhancement-mode GaN transistors became generally available.[27] Only n-channel transistors were available.[27] These devices were designed to replace power MOSFETs in applications where switching speed or power conversion efficiency is critical. These transistors are built by growing a thin layer of GaN on top of a standard silicon wafer, often referred to as GaN-on-Si by manufacturers.[28] This allows the FETs to maintain costs similar to silicon power MOSFETs but with the superior electrical performance of GaN. Another seemingly viable solution for realizing enhancement-mode GaN-channel HFETs is to employ a lattice-matched quaternary AlInGaN layer of acceptably low spontaneous polarization mismatch to GaN.[29]

GaN power ICs monolithically integrate a GaN FET, GaN-based drive circuitry and circuit protection into a single surface-mount device. Integration means that the gate-drive loop has essentially zero impedance, which further improves efficiency by virtually eliminating FET turn-off losses. Academic studies into creating low-voltage GaN power ICs began at the Hong Kong University of Science and Technology (HKUST) and the first devices were demonstrated in 2015. Commercial GaN power IC production began in 2018.

CMOS logic

In 2016 the first GaN CMOS logic using PMOS and NMOS transistors was reported (with gate widths of the PMOS and NMOS transistors of 500μm and 50μm, respectively).[30]

التطبيقات

LEDs and lasers

GaN-based violet laser diodes are used to read Blu-ray Discs. The mixture of GaN with In (InGaN) or Al (AlGaN) with a band gap dependent on the ratio of In or Al to GaN allows the manufacture of light-emitting diodes (LEDs) with colors that can go from red to ultra-violet.[23]

الترانزستورات

GaN transistors are suitable for high frequency, high voltage, high temperature and high efficiency applications.[بحاجة لمصدر]

GaN HEMTs have been offered commercially since 2006, and have found immediate use in various wireless infrastructure applications due to their high efficiency and high voltage operation. A second generation of devices with shorter gate lengths will address higher frequency telecom and aerospace applications.[31]

GaN based MOSFET and MESFET transistors also offer advantages including lower loss in high power electronics, especially in automotive and electric car applications.[32] Since 2008 these can be formed on a silicon substrate.[32] High-voltage (800 V) Schottky barrier diodes (SBDs) have also been made.[32]

GaN-based electronics (not pure GaN) has the potential to drastically cut energy consumption, not only in consumer applications but even for power transmission utilities.

Unlike silicon transistors which switch off due to power surges, GaN transistors are typically depletion mode devices (i.e. on / resistive when the gate-source voltage is zero). Several methods have been proposed to reach normally-off (or E-mode) operation, which is necessary for use in power electronics:[33][34]

  • the implantation of fluorine ions under the gate (the negative charge of the F-ions favors the depletion of the channel)
  • the use of a MIS-type gate stack, with recess of the AlGaN
  • the integration of a cascaded pair constituted by a normally-on GaN transistor and a low voltage silicon MOSFET
  • the use of a p-type layer on top of the AlGaN/GaN heterojunction

الرادارات

They are also utilized in military electronics such as active electronically scanned array radars.[35]

It was introduced by Thales in 2010 with the Ground Master 400 radar.[36]

The U.S. Army funded Lockheed Martin to incorporate GaN active-device technology into the AN/TPQ-53 radar system to replace two medium-range radar systems, the AN/TPQ-36 and the AN/TPQ-37.[37][38] The AN/TPQ-53 radar system was designed to detect, classify, track, and locate enemy indirect fire systems, as well as unmanned aerial systems.[39] The AN/TPQ-53 radar system provided enhanced performance, greater mobility, increased reliability and supportability, lower life-cycle cost, and reduced crew size compared to the AN/TPQ-36 and the AN/TPQ-37 systems.[37]

Lockheed Martin fielded other tactical operational radars with GaN technology in 2018, including TPS-77 Multi Role Radar System deployed to Latvia and Romania.[40] In 2019, Lockheed Martin's partner ELTA Systems Limited, developed a GaN-based ELM-2084 Multi Mission Radar that was able to detect and track air craft and ballistic targets, while providing fire control guidance for missile interception or air defense artillery.

On April 8 2020, Saab flight tested its new GaN designed AESA X-band radar in a JAS-39 Gripen fighter.[41] Saab already offers products with GaN based radars, like the Giraffe radar, Erieye, GlobalEye, and Arexis EW.[42][43][44][45] Saab also delivers major subsystems, assemblies and software for the AN/TPS-80 (G/ATOR)[46]

مقياس النانو

GaN nanotubes and nanowires are proposed for applications in nanoscale electronics, optoelectronics and biochemical-sensing applications.[47][48]

Spintronics potential

When doped with a suitable transition metal such as manganese, GaN is a promising spintronics material (magnetic semiconductors).[23]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التخليق

Bulk substrates

GaN crystals can be grown from a molten Na/Ga melt held under 100 atmospheres of pressure of N2 at 750 °C. As Ga will not react with N2 below 1000 °C, the powder must be made from something more reactive, usually in one of the following ways:

2 Ga + 2 NH3 → 2 GaN + 3 H2[49]
Ga2O3 + 2 NH3 → 2 GaN + 3 H2O[50]

Gallium nitride can also be synthesized by injecting ammonia gas into molten gallium at 900-980 °C at normal atmospheric pressure.[51]

Molecular beam epitaxy

Commercially, GaN crystals can be grown using molecular beam epitaxy or metalorganic vapour phase epitaxy. This process can be further modified to reduce dislocation densities. First, an ion beam is applied to the growth surface in order to create nanoscale roughness. Then, the surface is polished. This process takes place in a vacuum. Polishing methods typically employ a liquid electrolyte and UV irradiation to enable mechanical removal of a thin oxide layer from the wafer. More recent methods have been developed which utilize solid-state polymer electrolytes which are solvent-free and require no radiation before polishing.[52]

السلامة

GaN dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of gallium nitride sources (such as trimethylgallium and ammonia) and industrial hygiene monitoring studies of MOVPE sources have been reported in a 2004 review.[53]

Bulk GaN is non-toxic and biocompatible.[54] Therefore, it may be used in the electrodes and electronics of implants in living organisms.

انظر أيضاً

الهامش

  1. ^ أ ب ت Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.64. ISBN 1439855110.
  2. ^ Johan Strydom; Michael de Rooij; David Reusch; Alex Lidow (2015). GaN Transistors for efficient power conversion (2 ed.). California, USA: Wiley. p. 3. ISBN 978-1-118-84479-3.
  3. ^ Mion, Christian (2005). "Investigation of the Thermal Properties of Gallium Nitride Using the Three Omega Technique", Thesis, North Carolina State University.
  4. ^ Harafuji, Kenji; Tsuchiya, Taku; Kawamura, Katsuyuki (2004). "Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal". Appl. Phys. 96 (5): 2501. Bibcode:2004JAP....96.2501H. doi:10.1063/1.1772878.
  5. ^ Foster, Corey M.; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena (2013). "abstract NCSU study: Aqueous Stability of Ga- and N-Polar Gallium Nitride". Langmuir. 29 (1): 216–220. doi:10.1021/la304039n. PMID 23227805.
  6. ^ Bougrov V., Levinshtein M.E., Rumyantsev S.L., Zubrilov A., in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. Levinshtein M.E., Rumyantsev S.L., Shur M.S., John Wiley & Sons, Inc., New York, 2001, 1–30
  7. ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 5.12. ISBN 1439855110.
  8. ^ Di Carlo, A. (2001). "Tuning Optical Properties of GaN-Based Nanostructures by Charge Screening". Physica Status Solidi A. 183 (1): 81–85. Bibcode:2001PSSAR.183...81D. doi:10.1002/1521-396X(200101)183:1<81::AID-PSSA81>3.0.CO;2-N.
  9. ^ Arakawa, Y. (2002). "Progress in GaN-based quantum dots for optoelectronics applications". IEEE Journal of Selected Topics in Quantum Electronics. 8 (4): 823–832. Bibcode:2002IJSTQ...8..823A. doi:10.1109/JSTQE.2002.801675.
  10. ^ Lidow, Alexander; Witcher, J. Brandon; Smalley, Ken (March 2011). "Enhancement Mode Gallium Nitride (eGaN) FET Characteristics under Long Term Stress" (PDF). GOMAC Tech Conference.
  11. ^ Ahi, Kiarash (September 2017). "Review of GaN-based devices for terahertz operation". Optical Engineering. 56 (9): 090901. Bibcode:2017OptEn..56i0901A. doi:10.1117/1.OE.56.9.090901 – via SPIE.
  12. ^ Gallium Nitride as an Electromechanical Material. R-Z. IEEE 2014
  13. ^ أ ب Akasaki, I.; Amano, H. (1997). "Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters". Japanese Journal of Applied Physics. 36 (9A): 5393. Bibcode:1997JaJAP..36.5393A. doi:10.1143/JJAP.36.5393.
  14. ^ Wetzel, C.; Suski, T.; Ager, J.W. III; Fischer, S.; Meyer, B.K.; Grzegory, I.; Porowski, S. (1996) Strongly localized donor level in oxygen doped gallium nitride, International conference on physics of semiconductors, Berlin (Germany), 21–26 July 1996.
  15. ^ أ ب ت Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. (1989). "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)". Japanese Journal of Applied Physics. 28 (12): L2112. Bibcode:1989JaJAP..28L2112A. doi:10.1143/JJAP.28.L2112.
  16. ^ Terao, S.; Iwaya, M.; Nakamura, R.; Kamiyama, S.; Amano, H.; Akasaki, I. (2001). "Fracture of AlxGa1−xN/GaN Heterostructure – Compositional and Impurity Dependence –". Japanese Journal of Applied Physics. 40 (3A): L195. Bibcode:2001JaJAP..40..195T. doi:10.1143/JJAP.40.L195.
  17. ^ Preuss, Paul (11 August 2000). Blue Diode Research Hastens Day of Large-Scale Solid-State Light Sources. Berkeley Lab., lbl.gov.
  18. ^ Magnuson, M.; Mattesini, M.; Höglund, C.; Birch, J.; Hultman, L. (2010). "Electronic structure of GaN and Ga investigated by soft x-ray spectroscopy and first-principles methods". Phys. Rev. B. 81 (8): 085125. doi:10.1103/PhysRevB.81.085125. S2CID 30053222.
  19. ^ Wraback, M.; Shen, H.; Carrano, J.C.; Collins, C.J; Campbell, J.C.; Dupuis, R.D.; Schurman, M.J.; Ferguson, I.T. (2000). "Time-Resolved Electroabsorption Measurement of the electron velocity-field characteristic in GaN". Applied Physics Letters. 76 (9): 1155–1157. Bibcode:2000ApPhL..76.1155W. doi:10.1063/1.125968.
  20. ^ Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. (1986). "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer". Applied Physics Letters. 48 (5): 353. Bibcode:1986ApPhL..48..353A. doi:10.1063/1.96549. S2CID 59066765.
  21. ^ Amano, H.; Asahi, T.; Akasaki, I. (1990). "Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer". Japanese Journal of Applied Physics. 29 (2): L205. Bibcode:1990JaJAP..29L.205A. doi:10.1143/JJAP.29.L205.
  22. ^ Akasaki, I.; Amano, H.; Sota, S.; Sakai, H.; Tanaka, T.; Masayoshikoike (1995). "Stimulated Emission by Current Injection from an AlGaN/GaN/GaInN Quantum Well Device". Japanese Journal of Applied Physics. 34 (11B): L1517. Bibcode:1995JaJAP..34L1517A. doi:10.1143/JJAP.34.L1517.
  23. ^ أ ب ت Morkoç, H.; Strite, S.; Gao, G. B.; Lin, M. E.; Sverdlov, B.; Burns, M. (1994). "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies". Journal of Applied Physics. 76 (3): 1363. Bibcode:1994JAP....76.1363M. doi:10.1063/1.358463.
  24. ^ Dora, Y.; Chakraborty, A.; McCarthy, L.; Keller, S.; Denbaars, S. P.; Mishra, U. K. (2006). "High Breakdown Voltage Achieved on AlGaN/GaN HEMTs with Integrated Slant Field Plates". IEEE Electron Device Letters. 27 (9): 713. Bibcode:2006IEDL...27..713D. doi:10.1109/LED.2006.881020. S2CID 38268864.
  25. ^ أ ب Why Gallium Nitride?
  26. ^ Asif Khan, M.; Kuznia, J. N.; Bhattarai, A. R.; Olson, D. T. (1993). "Metal semiconductor field effect transistor based on single crystal GaN". Applied Physics Letters. 62 (15): 1786. Bibcode:1993ApPhL..62.1786A. doi:10.1063/1.109549.
  27. ^ أ ب Davis, Sam (March 2010). "Enhancement Mode GaN MOSFET Delivers Impressive Performance". Power Electronic Technology. 36 (3).
  28. ^ "GaN-on-silicon enablingGaN power electronics, but to capture less than 5%of LED making by 2020" (PDF). Compounds & AdvancedSilicon. SeminconductorTODAY. 9 (April/May 2014).
  29. ^ Rahbardar Mojaver, Hassan; Gosselin, Jean-Lou; Valizadeh, Pouya (2017-06-27). "Use of a bilayer lattice-matched AlInGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors". Journal of Applied Physics. 121 (24): 244502. doi:10.1063/1.4989836. ISSN 0021-8979.
  30. ^ HRL Laboratories claims first gallium nitride CMOS transistor fabrication. Feb 2016
  31. ^ 2010 IEEE Intl. Symposium, Technical Abstract Book, Session TH3D, pp. 164–165
  32. ^ أ ب ت Davis, Sam (2009-11-01). "SiC and GaN Vie for Slice of the Electric Vehicle Pie". Power Electronics. Retrieved 2016-01-03. These devices offer lower loss during power conversion and operational characteristics that surpass traditional silicon counterparts.
  33. ^ "Making the new silicon: Gallium nitride electronics could drastically cut energy usage". Retrieved 2018-06-28.
  34. ^ Meneghini, Matteo; Hilt, Oliver; Wuerfl, Joachim; Meneghesso, Gaudenzio (2017-01-25). "Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate". Energies (in الإنجليزية). 10 (2): 153. doi:10.3390/en10020153.
  35. ^ "Gallium Nitride-Based Modules Set New 180-Day Standard For High Power Operation." Northrop Grumman, 13 April 2011.
  36. ^ Pocock, Chris. "Export Market Strong for Thales Ground Radar". Aviation International News (in الإنجليزية). Retrieved 2021-05-28.
  37. ^ أ ب Brown, Jack (16 October 2018). "GaN Extends Range of Army's Q-53 Radar System". Microwaves&RF. Retrieved 23 July 2019.
  38. ^ Martin, Lockheed. "U.S. Army Awards Lockheed Martin Contract Extending AN/TPQ-53 Radar Range". Lockheed Martin. Retrieved 23 July 2019.
  39. ^ Martin, Lockheed. "AN/TPQ-53 Radar System". Lockheed Martin. Retrieved 23 July 2019.
  40. ^ Martin, Lockheed. "Lockheed Martin Demonstrates Mature, Proven Radar Technology During U.S. Army's Sense-Off". Lockheed Martin. Retrieved 23 July 2019.
  41. ^ "Gripen C/D Flies with Saab's new AESA Radar for the First Time". Archived from the original on 2020-05-02.
  42. ^ "Saab first in its industry to bring GaN to market". Archived from the original on 2016-02-06.
  43. ^ "Saab's Giraffe 1X Radar Offers a Man-Portable 75km Detection Range". Archived from the original on 2020-08-23.
  44. ^ "Saab Receives Swedish Order for Giraffe 4A and Arthur Radars". Archived from the original on 2018-12-05.
  45. ^ "Arexis - Outsmarting threats by electronic attack". Archived from the original on 2020-08-23.
  46. ^ "Saab to Supply Key Components in Support of the U.S. Marine Corps Ground/Air Task Oriented Radar (G/ATOR) Program". Feb 12, 2015. Archived from the original on 2020-10-31.
  47. ^ Goldberger, J.; He, R.; Zhang, Y.; Lee, S.; Yan, H.; Choi, H. J.; Yang, P. (2003). "Single-crystal gallium nitride nanotubes". Nature. 422 (6932): 599–602. Bibcode:2003Natur.422..599G. doi:10.1038/nature01551. PMID 12686996. S2CID 4391664.
  48. ^ Zhao, Chao; Alfaraj, Nasir; Subedi, Ram Chandra; Liang, Jian Wei; Alatawi, Abdullah A.; Alhamoud, Abdullah A.; Ebaid, Mohamed; Alias, Mohd Sharizal; Ng, Tien Khee; Ooi, Boon S. (2019). "III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications". Progress in Quantum Electronics. 61: 1–31. doi:10.1016/j.pquantelec.2018.07.001.
  49. ^ Ralf Riedel, I-Wei Chen (2015). Ceramics Science and Technology, Volume 2: Materials and Properties. Wiley-Vch. ISBN 978-3527802579.
  50. ^ Jian-Jang Huang, Hao-Chung Kuo, Shyh-Chiang Shen (2014). Nitride Semiconductor Light-Emitting Diodes (LEDs). p. 68. ISBN 978-0857099303.{{cite book}}: CS1 maint: multiple names: authors list (link)
  51. ^ M. Shibata, T. Furuya, H. Sakaguchi, S. Kuma (1999). "Synthesis of gallium nitride by ammonia injection into gallium melt". Journal of Crystal Growth. 196 (1): 47–52. Bibcode:1999JCrGr.196...47S. doi:10.1016/S0022-0248(98)00819-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  52. ^ "Liquid electrolyte-free electrochemical oxidation of GaN surface using a solid polymer electrolyte toward electrochemical mechanical polishing". Electrochemistry Communications (in الإنجليزية). 97: 110–113. 2018-12-01. doi:10.1016/j.elecom.2018.11.006. ISSN 1388-2481.
  53. ^ Shenai-Khatkhate, D. V.; Goyette, R. J.; Dicarlo, R. L. Jr; Dripps, G. (2004). "Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors". Journal of Crystal Growth. 272 (1–4): 816–21. Bibcode:2004JCrGr.272..816S. doi:10.1016/j.jcrysgro.2004.09.007.
  54. ^ Shipman, Matt and Ivanisevic, Albena (24 October 2011). "Research Finds Gallium Nitride is Non-Toxic, Biocompatible – Holds Promise For Biomedical Implants". North Carolina State University

وصلات خارجية