انحراف مداري
اختلاف المركز eccentricity هو واحد من عناصر المدار الستة (وهى كميات تحدد الجرم في الفضاء) وهو مقياس تفلطح الإهليلج (القطع الناقص) أو مقدار بعده عن الدائرة. واختلاف مركز الإهليلجيات يكون عادى بين الصفر والواحد فحين يكون مقدار اختلاف المركز صفرا يكون الشكل دائريا وحين يكون مقدار اختلاف المركز واحدا يكون الشكل ( قطعا مكافئيا) أما إذا كان اختلاف المركز أكبر من واحد يكون الشكل (قطعا زائدا). ويحسب اختلاف مركز الإهليلج (القطع الناقص) = المسافة بين البؤرتين طول المحور الرئيسى.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
التعريف
في مسألة جسمين مع قوة قانون التربيع العكسي، كل مدار يكون مدار كپلر. The eccentricity of this Kepler orbit is a positive number that defines its shape.
وقد يأخذ اختلاف المركز القيم التالية:
- مدار دائري:
- elliptic orbit: (انظر Ellipse)
- parabolic trajectory: (انظر Parabola)
- hyperbolic trajectory: (انظر Hyperbola)
اختلاف المركز تكون قيمته
حيث E هي الطاقة المدارية الكلية، هي عزم زاوي، هي كتلة مخفضة. و معامل قانون التربيع العكسي للقوة المركزية مثل الجاذبية أو الكهروستاتيكا في الفيزياء الكلاسيكية:
( تكون سالبة للقوة الجاذبة، وموجبة للقوة الطاردة) (انظر أيضاً مسألة كپلر).
أو في حالة قوة تثاقلية:
حيث هي الطاقة المدارية النوعية (total energy divided by the reduced mass), the standard gravitational parameter based on the total mass, and the specific relative angular momentum (angular momentum divided by the reduced mass).
For values of e from 0 to 1 the orbit's shape is an increasingly elongated (or flatter) ellipse; for values of e from 1 to infinity the orbit is a hyperbola branch making a total turn of 2 arccsc e, decreasing from 180 to 0 degrees. The limit case between an ellipse and a hyperbola is for e precisely 1 which is parabola.
الحساب
Eccentricity of an orbit can be calculated from orbital state vectors as a magnitude of eccentricity vector:
حيث:
For elliptical orbits it can also be calculated from distance at apoapsis and periapsis:
حيث:
- is radius at apoapsis (i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse).
- is radius at periapsis (the closest distance).
أمثلة
انظر أيضا
- متحد المركز
- عناصر المدار
- Eccentricity (mathematics)
- Eccentricity vector
- معادلة الزمن
- Milankovitch cycles
الهامش
المصادر
- مؤمن, عبد الأمير (2006). قاموس دار العلم الفلكي. بيروت، لبنان: دار العلم للملايين.
{{cite book}}
: Cite has empty unknown parameter:|طبعة أولى coauthors=
(help)