نتريد الليثيوم

نتريد الليثيوم
Unit cell ball and stick model of lithium nitride
__ Li+     __ N3−
Structure Li3N.svg
Crystal structure of lithium nitride.
الأسماء
اسم أيوپاك المفضل
Lithium nitride
أسماء أخرى
Trilithium nitride
المُعرِّفات
رقم CAS
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.043.144 Edit this at Wikidata
رقم EC
  • 247-475-2
مرجع Gmelin 1156
الخصائص
الصيغة الجزيئية Li3N
كتلة مولية 34.83 g/mol
المظهر red, purple solid
الكثافة 1.270 g/cm3
نقطة الانصهار
قابلية الذوبان في الماء reacts
log P 3.24
البنية
البنية البلورية see text
المخاطر
خطر رئيسي reacts with water to release ammonia
ن.م.ع. مخطط تصويري الرمز التصويري للهب في النظام المنسق عالمياً لتصنيف وعنونة الكيماويات (GHS)الرمز التصويري في Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
ن.م.ع. كلمة الاشارة Danger
H260, H314
P223, P231+P232, P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P335+P334, P363, P370+P378, P402+P404, P405, P501
NFPA 704 (معيـَّن النار)
Flammability code 0: لن يشتعل. مثل الماءHealth (blue): no hazard codeReactivity code 2: يخضع لتغير كيميائي عنيف في درجات حرارة وضغوط مرتفعة ، أو يتفاعل بعنف مع الماء ، أو قد يشكل خلطات متفجرة بالماء. مثال: الفسفور الأبيضSpecial hazard W: يتفاعل مع الماء بطريقة غير عادية أو خطيرة. مثال: الصوديوم ، حمض الكبريتيكNFPA 704 four-colored diamond
0
2
مركبات ذا علاقة
Lithium oxide
Sodium nitride
Potassium nitride
مركـّبات ذات علاقة
Lithium amide
Lithium imide
ما لم يُذكر غير ذلك، البيانات المعطاة للمواد في حالاتهم العيارية (عند 25 °س [77 °ف]، 100 kPa).
X mark.svgN verify (what is YesYX mark.svgN ?)
مراجع الجدول

Lithium nitride is a compound with the formula Li3N. It is the only stable alkali metal nitride. The solid has a reddish-pink color and high melting point.[1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preparation and handling

Lithium nitride is prepared by direct combination of elemental lithium with nitrogen gas:[2]

6 Li + N2 → 2 Li3N

Instead of burning lithium metal in an atmosphere of nitrogen, a solution of lithium in liquid sodium metal can be treated with N2. Lithium nitride reacts violently with water to produce ammonia:

Li3N + 3 H2O → 3 LiOH + NH3


Structure and properties

alpha-Li3N (stable at room temperature and pressure) has an unusual crystal structure that consists of two types of layers, one sheet has the composition Li2N contains 6-coordinate N centers and the other sheet consists only of lithium cations.[3] Two other forms are known: beta-Lithium nitride, formed from the alpha phase at 4,200 bars (4,100 atm) has the sodium arsenide (Na3As) structure; gamma-Lithium nitride (same structure as Li3Bi) forms from the beta form at 35 to 45 gigapascals (350,000 to 440,000 atm).[4]

Lithium nitride shows ionic conductivity for Li+, with a value of c. 2×10−4Ω−1cm−1, and an (intracrystal) activation energy of c. 0.26eV (c. 24 kJ/mol). Hydrogen doping increases conductivity, whilst doping with metal ions (Al, Cu, Mg) reduces it.[5][6] The activation energy for lithium transfer across lithium nitride crystals (intercrystalline) has been determined to be higher at c. 68.5 kJ/mol.[7] The alpha form is a semiconductor with band gap of c. 2.1 eV.[4]

Reaction with hydrogen at under 300 °C (0.5 MPa pressure) produces lithium hydride and lithium amide.[8]

Lithium nitride has been investigated as a storage medium for hydrogen gas, as the reaction is reversible at 270 °C. Up to 11.5% by weight absorption of hydrogen has been achieved.[9]

Reacting lithium nitride with carbon dioxide results in amorphous carbon nitride (C3N4), a semiconductor, and lithium cyanamide (Li2CN2), a precursor to fertilizers, in an exothermic reaction.[10] [11]

References

  1. ^ Greenwood, N. N. (1997). Chemistry of the Elements (2nd Edition ed.). Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4. {{cite book}}: |edition= has extra text (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ E. Döneges "Lithium Nitride" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, New York. Vol. 1. p. 984.
  3. ^ Barker M. G.; Blake A. J.; Edwards P. P.; Gregory D. H.; Hamor T. A.; Siddons D. J.; Smith S. E. (1999). "Novel layered lithium nitridonickelates; effect of Li vacancy concentration on N co-ordination geometry and Ni oxidation state". Chemical Communications (13): 1187–1188. doi:10.1039/a902962a.
  4. ^ أ ب Walker, G, ed. (2008). Solid-State Hydrogen Storage: Materials and Chemistry. §16.2.1 Lithium nitride and hydrogen:a historical perspective.
  5. ^ Lapp, Torben; Skaarup, Steen; Hooper, Alan (October 1983). "Ionic conductivity of pure and doped Li3N". Solid State Ionics. 11 (2): 97–103. doi:10.1016/0167-2738(83)90045-0.
  6. ^ Boukamp, B. A.; Huggins, R. A. (6 September 1976). "Lithium ion conductivity in lithium nitride". Physics Letters A. 58 (4): 231–233. Bibcode:1976PhLA...58..231B. doi:10.1016/0375-9601(76)90082-7.
  7. ^ Boukamp, B. A.; Huggins, R. A. (January 1978). "Fast ionic conductivity in lithium nitride". Materials Research Bulletin. 13 (1): 23–32. doi:10.1016/0025-5408(78)90023-5.
  8. ^ Goshome, Kiyotaka; Miyaoka, Hiroki; Yamamoto, Hikaru; Ichikawa, Tomoyuki; Ichikawa, Takayuki; Kojima, Yoshitsugu (2015). "Ammonia Synthesis via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition". Materials Transactions. 56 (3): 410–414. doi:10.2320/matertrans.M2014382.
  9. ^ Ping Chen; Zhitao Xiong; Jizhong Luo; Jianyi Lin; Kuang Lee Tan (2002). "Interaction of hydrogen with metal nitrides and amides". Nature. 420 (6913): 302–304. Bibcode:2002Natur.420..302C. doi:10.1038/nature01210. PMID 12447436. S2CID 95588150.
  10. ^ Yun Hang Hu, Yan Huo (12 September 2011). "Fast and Exothermic Reaction of CO2 and Li3N into C–N-Containing Solid Materials". The Journal of Physical Chemistry A. The Journal of Physical Chemistry A 115 (42), 11678-11681. 115 (42): 11678–11681. Bibcode:2011JPCA..11511678H. doi:10.1021/jp205499e. PMID 21910502.
  11. ^ Darren Quick (21 May 2012). "Chemical reaction eats up CO2 to produce energy...and other useful stuff". NewAtlas.com. Retrieved 17 April 2019.

See also


قالب:Inorganic-compound-stub