معجل جسيمات
معجل الجسيم هو جهاز يستخدم المجالات الكهربائية لتعجيل جسيمات الشحنات الكهربائية إلى سرعات عالية ولتحديدها في أشعة موجهة. أجهزة التلفاز المبنية على أنبوب الأشعة المهبطية تستخدم معجل سرعة بسيط.
يوجد نوعان من معجلات السرعة: المعجلات الخطية أو المستقيمة و المعجلات الدائرية. ويشار إلى المعجلات المستخدمة كمصادمات للجسيمات بمحطمات الذرة إنگليزية: atom smashers[1][2].
مثال على المصادمات يوجد بمدينة جينيف قامت ببنائه حديثا المنظمة الأوروبية للبحث النووي وهو مصادم الهدرونات الكبير.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الاستخدام
يستفاد من حزم الجسيمات عالية الطاقة في كلا من بحوث العلوم الأساسية والتطبيقية. ويقوم العلماء بإجراء التفاعلات بين الجسيمات في أعلى مستويات الطاقة الممكنة وذلك بغرض أكتشاف جسيمات أولية جديدة ، وفهم بنية المادة و الكون والزمن . وتجرى التفاعلات عن طريق اصتدام جسيمات نعرفها مثل الإلكترونات أو البروتونات عند طاقة حركية للجسيمات تقدر بعدة مئات الميجا إلكترون فولت GeV ، كما وصل مصادم الهدرونات الكبير إلى إجراء تصادم البروتونات عند طاقة قدرها 7 تيرا إلكترون فولت ، أي أعلى 7000 مرة عن 1 جيجا إلكترون فولت.
ويحتاج الفيزيائيون إلى تسريع البروتونات إلى تلك السرعات العظيمة لغرضين : أولهما : للتغلب على التنافر الذي يحدث بين بروتونين شحنتهما موجبة ، ثانيا :لأن زيادة طاقة البروتونين المتصادمين يمكن بها تخليق جسيمات كتلتها أكبر من كتلة البروتون ، إذ يتحول جزء من طاقة البروتونين عند التصادم إلى مادة (طبقا لتكافؤ المادة والطاقة الذي اكتشفه أينشتاين) . أي أن الأبناء الناتجين عن التفاعل يكونوا أكبر وزنا من آبائهم !. وثالثا : كلما زادت طاقة البروتونات عند التصادم كلما زاد احتمال تكسر البروتون وانطلاق مكوناته التي هي أنواع من الكواركات . حتى أن مكشاف مصادم فيرميلاب يقوم بتسريع البروتونات في دائرة وتسريع نقيض البروتونات - وهو شحنته سالبة - في دائرة أخرى في اتجاه عكسي ، ثم توجيه فيضي البروتونات ونقيض البروتونات للاصتدام ، ودراسة نواتج الاصتدام. وتبدأ دراسة النواتج بقياسها أولا أي استخدام عداد جسيمات.
والتفاعلات و التآثر بين أبسط أشكال الجسيمات هي: اللبتونات (مثل إلكترونات وبوزيترونات وكواركات المادة، أو فوتونات والغلوونات في نظرية المجال الكمي). وبما أنه لايمكن الحصول على كواركات معزولة بسبب حجز اللون إنگليزية: color confinement، لذا فإن أبسط التجارب المتاحة تنطوي على أولا: تفاعلات اللبتونات مع بعضها البعض، ثم ثانيا: اللبتونات مع النوكليونات المحتوية على الكواركات والغلوونات. لدراسة اصطدام الكواركات مع بعضها البعض، لجأ العلماء إلى اصطدام النويات والتي قد تكون ذا فائدة في الطاقة العالية نظرا لأنها الأساس لتفاعل جسمين المحتويين على الكواركات والغلوونات. لذا يميل علماءالجسيمات الأولية إلى استخدام الأجهزة لتوليد حزم من الإلكترونات والبوزيترونات والبروتونات ومضاد بروتونات، فتتفاعل مع بعضها البعض أو مع أبسط النويات (مثل نواة الهيدروجين أو ديوتريوم) عند أعلى طاقة ممكنة، بشكل عام مئات من الكترون فولت فما فوق. فقد يستخدم علماء الذرة والكونيات حزم من الذرات المجردة، والخالية من الإلكترونات لفحص بنية وتفاعل وخصائص النويات نفسها وكثافة المادة في كثافة ودرجات حرارة قصوى، مثل التي يعتقد بأنها قد حدثت باللحظة الأولى من الانفجار العظيم.
إضافة إلى كونه ذو أهمية أساسية، فقد تتحد الإلكترونات ذات الطاقة العالية إلى حزم فوتونات متماسكة عالية الطاقة وساطعة بالكامل ـ فوق بنفسجية وأشعة سينيةـ خلال إشعاع سنكروتروني، فالفوتونات لها استخدامات عديدة في دراسة تكوين الذرة وفي الكيمياء وفيزياء المواد المكثفة، وعلوم الأحياء، والتكنولوجيا. ومن الأمثلة المضافة في منشأة السنكترون الأوروبية (ESRF) والتي استخدمت في الآونة الأخيرة لاستخراج صور مفصلة ثلاثية الأبعاد عن الحشرات المحاصرة داخل الكهرمان[3]. ومن ثم هناك طلب كبير على معجلات الإلكترون ذات طاقة الكترون فولت معتدلة وعالية الكثافة.
معجلات طاقة منخفضة
المثال اليومي لمعجلات الجسيمات هو أنبوب الأشعة المهبطية الموجودة بأجهزة التلفزيون وأيضا مولدات الأشعة السينية. وتلك المعجلات ذات الطاقة المنخفضة تستخدم في العادة زوجا واحدا من الأقطاب الكهربية مع جهد تيار مستمر من عدة آلاف فولت بينهما. وفي مولدات الأشعة السينية، يكون الهدف الذي تصتدم به الإلكترونات المسرعة هو نفسه أحد الأقطاب.
ويسمى أحد المعجلات ذات الطاقة المنخفضة زارع الأيون ion implanter ، وهو يـُستخدم في صناعة الدارات المتكاملة .
معجلات طاقة عالية
أنواع المعجلات ذات الجهد المستمر DC القادرة على تسريع الجسيمات المشحونة إلى سرعة كافية يبدأ عندها التفاعل النووي هي مولدات كوكروفت-والتون أو مضاعفات الجهد الفولتي والتي تحول التيار المتردد إلى تيار مستمر عالي الفولتية، أو مولدات فان دي جراف التي تستخدم كهرباء ساكنة ، تقوم أحزمة مطاطية بتكوينها وتراكمها حتى طاقة 2 مليون فولت مثلا.
وتستخدم أضخم وأقوى معجلات الجسيمات مثل RHIC ومصادم الهادرونات الكبير (LHC) التابع لسرن (والذي بدأ بالعمل منذ منتصف نوفمبر 2009[4][5][6]) وكذلك تيفاترون في تجارب فيزياء الجسيمات.
وتنتج تلك المعجلات أيضا فيضا من البروتونات السريعة ، تقترب سرعتها من سرعة الضوء مثل مصادم الهدرونات الكبير. وينتج بعضها الآخر عناصر غنية بالبروتونات بغرض استخدامها في الطب وهي تختلف عن العناصر الغنية بالنيوترونات والتي يمكن إنتاجها في المفاعلات النووية ، وقد بينت بعض الاكتشافات الجديدة طريقة لإنتاج الموليبدينوم-99 - والذي ينتج عادة في المفاعل النووي - عن طريق تسريع نظائر ثقيلة للهيدروجين, [7] إلا أن تلك الطريقة الجديدة تستلزم أيضا أنتاج النظير الثقيل للهيدروجين تريتيوم في مفاعل نووي. ويوجد مثال لهذا المعجل المسمى LANSCE في مختبر لوس ألاموس الوطني في لوس ألاموس، نيومكسيكو Los Alamos Laboratory ب الولايات المتحدة الأمريكية.
معجلات السرعة الخطية
المادة المضادة | |
استعراض | |
إفناء | |
أجهزة | |
الجسيمات المضادة | |
استخدامات | |
أجسام | |
شخصيات
|
في معجلات السرعة الخطية يتم تعجيل الجسيمات في خط مستقيم بحيث يكون الهدف في نهاية الخط. أشهر امثلة لمعجلات السرعة الخطية وأكثر انتشاراً هو أنبوب الأشعة المهبطية والمستخدم في أجهزة التلفاز التقليدية. أطول معجل سرعة خطي هو معجل ستانفورد الخطي إنگليزية: Stanford Linear Accelerator والبالغ طوله ثلاث كيلومترات.
معجلات السرعة الدائرية
في المعجلات الدائرية يتم تسريع الجسيمات عفي مسار دائري عن طريق مغناطيسات كهربائية تحافظ على منحني دوران فيض الجسيمات المعجلة . و يتميز معجل السرعة الدورانية بإمكانية تعجيل الجسيمات بشكل مستمر ولمدة غير محددة في دائرة المعجل. أكبر معجل دائري حاليا هو مصادم الهدرونات الكبير الموجود على حدود فرنسا و سويسرا و يبلغ محيطه 27 كيلومتر وهو مبني بكامله تحت الأرض على عمق متوسط يبلغ 100 متر. وقد بدأ العمل فعليا عام 2010 والفيزيائيون شغوفون بما سيحصلون منه منن نتائج علمية جديدة قد تغير من فهمنا الحالي لطبيعة الكون .
- يرتبط بناء الكون ، نشأته ومصيره ارتباطا أساسيا بالجسيمات الأولية وخواصها المكونة للكون ، فالجسيمات الأولية هي اللبنات الأولية التي تكوّن الكون ، فمنها تتكون أخف الذرات وهو الهيدروجين ومنها تتكون جميع العناصر الموجودة في الكون ، ومنها الكربون و النيتروجين و الأكسجين و الهيدروجين وهي العناصر التي تكون المادة الحية ، والكائنات الحية ومنها الإنسان.
- لهذا يهتم الفيزيائيون والحكومات ببناء تلك المصادمات الضخمة ، وما تتكلفه من كلفة باهظة (تكلف مصادم الهدرونات الكبير حتى الآن نحو 3 مليار يورو) ، بغرض معرفة بناء الكون ، وموقع الإنسان فيه.
أنواع من المعجلات
- سيكلوترون
- معجل خطي
- مسرع دوراني تزامني
- مصادم الهدرونات الكبير
- فيرميلاب
- لولب مركب للميونات
- مطياف زمن الطيران
مصادر
- ^ Higgins, Alexander (December 18, 2009). "Atom Smasher Preparing 2010 New Science Restart". US News and World Report.
- ^ Cho, Adrian (June 2, 2006). "Aging Atom Smasher Runs All Out in Race for Most Coveted Particle". Science.
- ^ Jonathan Amos (1 April 2008). "Secret 'dino bugs' revealed". BBC. Retrieved 2008-09-11.
- ^ "CERN management confirms new LHC restart schedule". CERN Press Office. 9 February 2009. Retrieved 2009-02-10.
- ^ "CERN reports on progress towards LHC restart". CERN Press Office. 19 June 2009. Retrieved 2009-07-21.
- ^ "Two circulating beams bring first collisions in the LHC". CERN Press Office. 23 November 2009. Retrieved 2009-11-23.
- ^ Nagai, Yasuki; Hatsukawa, Yuichi (2009). "Production of 99Mo for Nuclear Medicine by 100Mo(n,2n)99Mo". Journal of the Physical Society of Japan. 78: 033201. doi:10.1143/JPSJ.78.033201.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
أنظر أيضاً