رونتگنيوم

رونتگنيوم, 00Rg
رونتگنيوم
المظهرفضي (متوقـَّعة)[1]
عدد الكتلة(لم تأكـَّد: 286)
رونتگنيوم في الجدول الدوري
Hydrogen (reactive nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (reactive nonmetal)
Nitrogen (reactive nonmetal)
Oxygen (reactive nonmetal)
Fluorine (reactive nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (reactive nonmetal)
Sulfur (reactive nonmetal)
Chlorine (reactive nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (post-transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (reactive nonmetal)
Bromine (reactive nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (post-transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (reactive nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (post-transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (post-transition metal)
Nihonium (unknown chemical properties)
Flerovium (unknown chemical properties)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)
Au

Rg

(Uhp)
دارمشتاتيومرونتگنيومكوپرنيكيوم
الرقم الذري (Z)111
المجموعة11
الدورةperiod 7
المستوى الفرعي  d-block
التوزيع الإلكتروني[Rn] 5f14 6d9 7s2 (predicted)[1][2]
الإلكترونات بالغلاف2, 8, 18, 32, 32, 17, 2 (متوقـَّعة)
الخصائص الطبيعية
الطور at د.ح.ض.قصلب (متوقـَّعة)[3]
الكثافة (بالقرب من د.ح.غ.)28.7 ج/سم³ (متوقـَّعة)[2]
الخصائص الذرية
طاقات التأين
  • الأول: 1020 kJ/mol
  • الثاني: 2070 kJ/mol
  • الثالث: 3080 kJ/mol
  • (المزيد) (كلها تقديرية)[2]
نصف القطر الذريempirical: 138 pm (متوقـَّعة)[2][4]
نصف قطر التكافؤ121 pm (مقدّرة)[5]
خصائص أخرى
التواجد الطبيعيsynthetic
البنية البلوريةbody-centered cubic (bcc)
Body-centered cubic crystal structure for رونتگنيوم

(متوقـَّعة)[3]
رقم كاس54386-24-2
التاريخ
التسميةعلى اسم ڤلهلم رونتگن
الاكتشافمركز جي‌إس‌آي هلمهولتس لأبحاث الأيونات الثقيلة (1994)
نظائر الرونتگنيوم v • [{{fullurl:Template:{{{template}}}|action=edit}} e] 
قالب:جدول نظائر رونتگنيوم غير موجود
تصنيف التصنيف: رونتگنيوم
| المراجع

رونتگنيوم Roentgenium هو أحد العناصر الكيميائية الموجودة في الجدول الدوري وله الرمز Rg (سابقا كان له الرمز Uuu) ورقم ذري 111 مما يجعله أحد الذرات البالغة الثقل. وهو عنصر إصطناعي وأكثر نظائره عمرا يبلغ 3.6 ثانية. ونظرا لوجوده في المجموعة 11 فإنه فلز إنتقالي وبالتالي فإنه من الممكن أن يظهر كفلز ثقيل لامع وصلب. ولا يمكن توقع ما إذا كان سيكون لونه مثل الذهب أم لا.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

مقدمة

A graphic depiction of a nuclear fusion reaction
تصوير بياني لتفاعل اندماج نووي. Two nuclei fuse into one, emitting a neutron. Thus far, reactions that created new elements were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all.
ڤيديو خارجي
Visualization of unsuccessful nuclear fusion, based on calculations by the Australian National University[11]

The heaviest[أ] atomic nuclei are created in nuclear reactions that combine two other nuclei of unequal size[ب] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react.[17] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can only fuse into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus.[18] Coming close alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus.[18][19] If fusion does occur, the temporary merger—termed a compound nucleus—is an excited state. To lose its excitation energy and reach a more stable state, a compound nucleus either fissions or ejects one or several neutrons,[ت] which carry away the energy. This occurs in approximately 10−16 seconds after the initial collision.[20][ث]

The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam.[23] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products)[ج] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival.[23] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long.[26] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured.[23]

Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, their influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, as it has unlimited range.[27] Nuclei of the heaviest elements are thus theoretically predicted[28] and have so far been observed[29] to primarily decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission;[ح] these modes are predominant for nuclei of superheavy elements. Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be determined arithmetically.[خ] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.[د]

The information available to physicists aiming to synthesize one of the heaviest elements is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.[ذ]


تاريخ الرونتجنيوم

سُمي رونتگنيوم على اسم الفيزيائي ڤلهلم رونتگن، مكتشف الآشعة السينية.
ملف:Backdrop for presentation of Röntgenium, element 111, at GSI Darmstadt.JPG
خلفية مسرحية لعرض اكتشاف والتعرف على الرونتگنيوم في GSI في دارمشتات.

تم اكتشفه فريق عالمي بقيادة سيگورد هوفمان في مركز جي‌إس‌آي هلمهولتس لأبحاث الأيونات الثقيلة بدارمشتات، ألمانيا 8 ديسمبر عام 1994.[41] قصف الفريق هدفاً من بيزموث-209 بأنوية مسرَّعة من النيكل-64 فعثروا على ثلاث أنوية من رونتگنيوم-272:

20983Bi + 6428Ni272111Rg + 10n

والإسم رونتجنيوم تم قبوله كإسم دائم في 1 نوفمبر عام 2004، على شرف ويلهلم رونتجن، وكان يطلق على العنصر إسم مؤقت أنون نيوم, وذلك بطريقة أسماء العناصر القياسية IUPAC. ويسمي في بعض الأبحاث أسفل-الذهب "Eka-Gold".

نظائر الرونتجنيوم

يوجد 3 نظائر للرونتجنيوم. أطولهم عمرا 280Rg والذى يضمحل خلال إضمحلال ألفا, وله فترة عمر نصف تبلغ 3.6 ثانية. أقصر النظائر عمرا 272Rg والذى له فترة عمر نصف تبلغ 1.5 مللى ثانية. اخر النظائر المعروفة 279Rg والذى يضمحل في فترة عمر نصف تبلغ 170 مللى ثانية.

الهدف المقذوف CN نتيجة المحاولة
208Pb 65Cu 273Rg تفاعل ناجح
209Bi 64Ni 273Rg تفاعل ناجح
232Th 45Sc 277Rg التفاعل لم يـُجرَّب بعد
231Pa 48Ca 279Rg التفاعل لم يـُجرَّب بعد
238U 41K 280Rg التفاعل لم يـُجرَّب بعد
237Np 40Ar 277Rg التفاعل لم يـُجرَّب بعد
244Pu 37Cl 281Rg التفاعل لم يـُجرَّب بعد
243Am 36S 279Rg التفاعل لم يـُجرَّب بعد
248Cm 31P 279Rg التفاعل لم يـُجرَّب بعد
249Bk 30Si 279Rg التفاعل لم يـُجرَّب بعد
249Cf 27Al 276Rg التفاعل لم يـُجرَّب بعد

وصلات خارجية


المصادر

  • تم ترجمة الصفحة من صفحة ويكيبيديا الإنجليزية .
  1. ^ أ ب Turler, A. (2004). "Gas Phase Chemistry of Superheavy Elements" (PDF). Journal of Nuclear and Radiochemical Sciences. 5 (2): R19–R25. doi:10.14494/jnrs2000.5.R19.
  2. ^ أ ب ت ث خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة Haire
  3. ^ أ ب Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
  4. ^ Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry. 21: 89–144. doi:10.1007/BFb0116498. Retrieved 4 October 2013.
  5. ^ Chemical Data. Roentgenium - Rg, Royal Chemical Society
  6. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M. (2013-05-30). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. American Physical Society. 87 (054621). Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  7. ^ Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  8. ^ Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (2014). "48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr". Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. PMID 24836239.
  9. ^ (2016) "Remarks on the Fission Barriers of SHN and Search for Element 120" in Exotic Nuclei.: 155–164. 
  10. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4.
  11. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). "Comparing Experimental and Theoretical Quasifission Mass Angle Distributions". European Physical Journal Web of Conferences. 86: 00061. Bibcode:2015EPJWC..8600061W. doi:10.1051/epjconf/20158600061. ISSN 2100-014X.
  12. ^ Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Retrieved 2020-03-15.
  13. ^ "Discovery of Elements 113 and 115". Lawrence Livermore National Laboratory. Archived from the original on 2015-09-11. Retrieved 2020-03-15.
  14. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8. S2CID 127060181.
  15. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
  16. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). "The identification of element 108" (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. S2CID 123288075. Archived from the original (PDF) on 7 June 2015. Retrieved 20 October 2012.
  17. ^ Subramanian, S. (2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Archived from the original on November 14, 2020. Retrieved 2020-01-18.
  18. ^ أ ب Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. N+1 (in الروسية). Retrieved 2020-02-02.
  19. ^ Hinde, D. (2014). "Something new and superheavy at the periodic table". The Conversation. Retrieved 2020-01-30.
  20. ^ أ ب Krása, A. (2010). "Neutron Sources for ADS" (PDF). Czech Technical University in Prague. pp. 4–8. S2CID 28796927. Archived from the original (PDF) on 2019-03-03. Retrieved October 20, 2019.
  21. ^ Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. S2CID 95737691. Retrieved 2020-08-28.
  22. ^ أ ب Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405. S2CID 99193729.
  23. ^ أ ب ت Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Retrieved 2020-01-27.
  24. ^ Hoffman, Ghiorso & Seaborg 2000, p. 334.
  25. ^ Hoffman, Ghiorso & Seaborg 2000, p. 335.
  26. ^ Zagrebaev, Karpov & Greiner 2013.
  27. ^ Beiser 2003, p. 432.
  28. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813. S2CID 118134429.
  29. ^ Audi et al. 2017, pp. 030001-128–030001-138.
  30. ^ Beiser 2003, p. 439.
  31. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838. S2CID 119531411.
  32. ^ Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a. S2CID 239775403.
  33. ^ Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Retrieved 2020-01-27.
  34. ^ أ ب Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Retrieved 2020-02-22.
  35. ^ "Популярная библиотека химических элементов. Сиборгий (экавольфрам)" [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru (in الروسية). Retrieved 2020-01-07. Reprinted from "Экавольфрам" [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (in الروسية). Nauka. 1977.
  36. ^ "Nobelium – Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved 2020-03-01.
  37. ^ أ ب Kragh 2018, pp. 38–39.
  38. ^ Kragh 2018, p. 40.
  39. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). "Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" (PDF). Pure and Applied Chemistry. 65 (8): 1815–1824. doi:10.1351/pac199365081815. S2CID 95069384. Archived (PDF) from the original on 25 November 2013. Retrieved 7 September 2016.
  40. ^ Commission on Nomenclature of Inorganic Chemistry (1997). "Names and symbols of transfermium elements (IUPAC Recommendations 1997)" (PDF). Pure and Applied Chemistry. 69 (12): 2471–2474. doi:10.1351/pac199769122471.
  41. ^ Hofmann, S.; Ninov, V.; Heßberger, F.P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.


خطأ استشهاد: وسوم <ref> موجودة لمجموعة اسمها "lower-alpha"، ولكن لم يتم العثور على وسم <references group="lower-alpha"/>

الكلمات الدالة: