متعدد السطوح

بعض أمثلة متعددات السطوح
POV-Ray-Dodecahedron.svg
متعدد أسطح منتظم
Small stellated dodecahedron.png
متعدد أسطح نجمي
Icosidodecahedron.png
Icosidodecahedron
(Uniform/Quasiregular)
Great cubicuboctahedron.png
Great cubicuboctahedron
(Uniform star)
Rhombictriacontahedron.svg
Rhombic triacontahedron
(Uniform/Quasiregular dual)
Elongated pentagonal cupola.png
Elongated pentagonal cupola
(Convex regular-faced)
Octagonal prism.png
متعدد أسطح موشوري ذو 8 أوجه
Square antiprism.png

متعدد أسطح لاهرمي ذو 4 أوجه

متعدد سطوح إنگليزية: polyhedron أو متعدد أوجه هو مجسّم مضلع في فضاء ثلاثي الأبعاد ويستخدم حالياً في فضاءات ذات أبعادٍ أكثر. لمتعدد الأوجه أوجه مستوية و حواف مستقيمة.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

أساسيات التعريف

Polyhedron blocks on display at the Universum museum in Mexico City


الخصائص

Polyhedral surface

A defining characteristic of almost all kinds of polyhedra is that just two faces join along any common edge. This ensures that the polyhedral surface is continuously connected and does not end abruptly or split off in different directions.

Edges

Edges have two important characteristics (unless the polyhedron is complex):

  • An edge joins just two vertices.
  • An edge joins just two faces.

These two characteristics are dual to each other.

محددة اويلر

The Euler characteristic χ relates the number of vertices V, edges E, and faces F of a polyhedron:

For a convex polyhedron or more generally for any simply connected polyhedron whose faces are also simply connected and whose boundary is a manifold, χ = 2. For a detailed discussion, see Proofs and Refutations by Imre Lakatos.

Orientability

Some polyhedra, such as all convex polyhedra, have two distinct sides to their surface, for example one side can consistently be coloured black and the other white. We say that the figure is orientable.

But for some polyhedra this is not possible, and the figure is said to be non-orientable. All polyhedra with odd-numbered Euler characteristic are non-orientable. A given figure with even χ < 2 may or may not be orientable.

Vertex figure

For every vertex one can define a vertex figure, which describes the local structure of the figure around the vertex. If the vertex figure is a regular polygon, then the vertex itself is said to be regular.

Duality

Dual Cube-Octahedron.svg

For every polyhedron there exists a dual polyhedron having:

  • faces in place of the original's vertices and vice versa,
  • the same number of edges
  • the same Euler characteristic and orientability

The dual of a convex polyhedron can be obtained by the process of polar reciprocation.

الحجم

الأشكال التقليدية لمتعدد السطوح

A dodecahedron


متعددات السطوح متماثلة

Many of the most studied polyhedra are highly symmetrical.

Tetrahedron.svg Hexahedron.svg Octahedron.svg POV-Ray-Dodecahedron.svg Icosahedron.svg

Uniform polyhedra and their duals

مقال رئيسي: Uniform polyhedron


Convex uniform Convex uniform dual Star uniform Star uniform dual
Regular Platonic solids Kepler-Poinsot polyhedra
Quasiregular Archimedean solids Catalan solids (no special name) (no special name)
Semiregular (no special name) (no special name)
Prisms Dipyramids Star Prisms Star Dipyramids
Antiprisms Trapezohedra Star Antiprisms Star Trapezohedra

Noble polyhedra


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Symmetry groups

The polyhedral symmetry groups are all point groups and include:

Those with chiral symmetry do not have reflection symmetry and hence have two enantiomorphous forms which are reflections of each other. The snub Archimedean polyhedra have this property.

Other polyhedra with regular faces

Equal regular faces

A few families of polyhedra, where every face is the same kind of polygon:

  • With regard to polyhedra whose faces are all squares: if coplanar faces are not allowed, even if they are disconnected, there is only the cube. Otherwise there is also the result of pasting six cubes to the sides of one, all seven of the same size; it has 30 square faces (counting disconnected faces in the same plane as separate). This can be extended in one, two, or three directions: we can consider the union of arbitrarily many copies of these structures, obtained by translations of (expressed in cube sizes) (2,0,0), (0,2,0), and/or (0,0,2), hence with each adjacent pair having one common cube. The result can be any connected set of cubes with positions (a,b,c), with integers a,b,c of which at most one is even.
  • There is no special name for polyhedra whose faces are all equilateral pentagons or pentagrams. There are infinitely many of these, but only one is convex: the dodecahedron. The rest are assembled by (pasting) combinations of the regular polyhedra described earlier: the dodecahedron, the small stellated dodecahedron, the great stellated dodecahedron and the great icosahedron.

There exists no polyhedron whose faces are all identical and are regular polygons with six or more sides because the vertex of three regular hexagons defines a plane. (See infinite skew polyhedron for exceptions with zig-zagging vertex figures.)

Deltahedra

A deltahedron (plural deltahedra) is a polyhedron whose faces are all equilateral triangles. There are infinitely many deltahedra, but only eight of these are convex:

Johnson solids

Other important families of polyhedra

Pyramids

Pyramids include some of the most time-honoured and famous of all polyhedra.

Stellations and facettings

مقال رئيسي: Stellation
First stellation of octahedron.png First stellation of dodecahedron.png Second stellation of dodecahedron.png Third stellation of dodecahedron.png Sixteenth stellation of icosahedron.png First stellation of icosahedron.png Seventeenth stellation of icosahedron.png


Zonohedra

Compounds


Orthogonal polyhedra

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generalisations of polyhedra

Apeirohedra

Complex polyhedra

Curved polyhedra

Spherical polyhedra


Curved spacefilling polyhedra

General polyhedra

Hollow faced or skeletal polyhedra

Tessellations or tilings

Non-geometric polyhedra

Topological polyhedra

Abstract polyhedra

Polyhedra as graphs

History

Prehistory

Greeks

Muslims and Chinese

Renaissance

متعدد السطوح النجمي

انظر أيضا:

متعدد السطوح في الطبيعة

المصادر

  • Coxeter, H.S.M.; Regular complex Polytopes, CUP (1974).
  • Cromwell, P.;Polyhedra, CUP hbk (1997), pbk. (1999).
  • Grünbaum, B.; Polyhedra with Hollow Faces, Proc of NATO-ASI Conference on Polytopes ... etc. (Toronto 1993), ed T. Bisztriczky et al., Kluwer Academic (1994) pp. 43–70.
  • Grünbaum, B.; Are your polyhedra the same as my polyhedra? Discrete and comput. geom: the Goodman-Pollack festschrift, ed. Aronov et al. Springer (2003) pp. 461–488. (pdf)
  • Pearce, P.; Structure in nature is a strategy for design, MIT (1978)

كتب عن متعدد السطوح

كتب للقراء، وللاستعمال المدرسي

  • Cromwell, P.; Polyhedra, CUP hbk (1997), pbk. (1999).
  • Cundy, H.M. & Rollett, A.P.; Mathematical models, 1st Edn. hbk OUP (1951), 2nd Edn. hbk OUP (1961), 3rd Edn. pbk Tarquin (1981).
  • Holden; Shapes, space and symmetry, (1971), Dover pbk (1991).
  • Pearce, P and Pearce, S: Polyhedra primer, Van Nost. Reinhold (May 1979), ISBN 0442264968, ISBN 978-0442264963.
  • Richeson, David S. (2008) Euler's Gem: The Polyhedron Formula and the Birth of Topology. Princeton University Press.
  • Senechal, M. & Fleck, G.; Shaping Space a Polyhedral Approch, Birhauser (1988), ISBN 0817633510
  • Tarquin publications: books of cut-out and make card models.
  • Wenninger, Magnus; Polyhedron models for the classroom, pbk (1974)
  • Wenninger, M.; Polyhedron models, CUP hbk (1971), pbk (1974).
  • Wenninger, M.; Spherical models, CUP.
  • Wenninger, M.; Dual models, CUP.

كتب جامعية

  • Coxeter, H.S.M. DuVal, Flather & Petrie; The fifty-nine icosahedra, 3rd Edn. Tarquin.
  • Coxeter, H.S.M. Twelve geometric essays. Republished as The beauty of geometry, Dover.
  • Thompson, Sir D'A. W. On growth and form, (1943). (not sure if this is the right category for this one, I haven't read it).

التصميم والعمارة

  • Critchlow, K.; Order in space.
  • Pearce, P.; Structure in nature is a strategy for design, MIT (1978)
  • Williams, R.; The geometrical foundation of natural structure, Dover (1979).

نصوص رياضية متقدمة

كتب تاريخية

WorldCat English: Polygons and Polyhedra: Theory and History.
  • Fejes Toth, L.;
  • Kepler, J.; De harmonices Mundi (Latin. Available in English translation).
  • Pacioli, L.;

انظر أيضا

وصلات خارجية

النظرية العامة

قوائم قواعد البيانات عن متعدد السطوح

برمجيات

  • A Plethora of Polyhedra An interactive and free collection of polyhedra in JAVA. Features includes nets, planar sections, duals, truncations and stellations of more than 300 polyhedra.
  • Stella: Polyhedron Navigator - Software for exploring polyhedra and printing nets for their physical construction. Includes uniform polyhedra, stellations, compounds, Johnson solids, etc.
  • World of Polyhedra - Comprehensive polyhedra in flash applet, showing vertices and edges (but not shaded faces)
  • Hyperspace Star Polytope Slicer - Explorer java applet, includes a variety of 3d viewer options.

مصادر لعمل نماذج ، نماذج لبيع

متفرقات

قالب:Polyhedra قالب:Polyhedron navigator

كثيرات الجوانب المعتادة والمنتظمة المحدبة الأساسية في الأبعاد 2–10
العائلة An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
مضلع منتظم مثلث مربع p-gon مسدس مخمس
متعدد السطوح المنتظم رباعي الأسطح Octahedronمكعب Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
المواضيع: Polytope familiesRegular polytopeList of regular polytopes and compounds