عشروني الأوجه

(تم التحويل من Icosahedron)

في الهندسة، عشروني الأوجه (icosahedron ؛ /ˌkɒsəˈhdrən,_ʔkəʔ,_ʔkʔ/ أو /ˌkɒsəˈhdrən/[1]) هو متعدد الأسطح بعشرين وجه. الاسم اللاتيني يأتي من من يونانية قديمة εἴκοσι (إيْكوسي)، وتعني "عشرون", و ἕδρα (هيدرا)، وتعني "مقعد". صيغة الجمع تكون إما "icosahedra" ( /ʔdrə/) أو "icosahedrons".

There are many kinds of icosahedra, with some being more symmetrical than others. The best known is the Platonic, convex regular icosahedron.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

عشرونيات الأوجه المنتظمة

نوعان من عشرونيات الأوجه المنتظمة
Icosahedron.png
عشروني الأوجه منتظم محدب
Great icosahedron.png
عشروني الأوجه الكبير

There are two objects, one convex and one nonconvex, that can both be called regular icosahedra. Each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. Both have icosahedral symmetry. The term "regular icosahedron" generally refers to the convex variety, while the nonconvex form is called a great icosahedron.


عشروني الأوجه منتظم محدب

The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.

Its dual polyhedron is the regular dodecahedron {5, 3} having three regular pentagonal faces around each vertex.

عشروني الأوجه الكبير

The great icosahedron is one of the four regular star Kepler-Poinsot polyhedra. Its Schläfli symbol is {3, 5/2}. Like the convex form, it also has 20 equilateral triangle faces, but its vertex figure is a pentagram rather than a pentagon, leading to geometrically intersecting faces. The intersections of the triangles do not represent new edges.

Its dual polyhedron is the great stellated dodecahedron {5/2, 3}, having three regular star pentagonal faces around each vertex.

عشرونيات الأوجه النجمية

Stellation is the process of extending the faces or edges of a polyhedron until they meet to form a new polyhedron. It is done symmetrically so that the resulting figure retains the overall symmetry of the parent figure.

In their book The Fifty-Nine Icosahedra, Coxeter et al. enumerated 58 such stellations of the regular icosahedron.

Of these, many have a single face in each of the 20 face planes and so are also icosahedra. The great icosahedron is among them.

Other stellations have more than one face in each plane or form compounds of simpler polyhedra. These are not strictly icosahedra, although they are often referred to as such.

Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
Zeroth stellation of icosahedron.png First stellation of icosahedron.png Ninth stellation of icosahedron.png First compound stellation of icosahedron.png Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png Sixteenth stellation of icosahedron.png Third stellation of icosahedron.png Seventeenth stellation of icosahedron.png
Stellation diagram of icosahedron.svg Small triambic icosahedron stellation facets.svg Great triambic icosahedron stellation facets.svg Compound of five octahedra stellation facets.svg Compound of five tetrahedra stellation facets.svg Compound of ten tetrahedra stellation facets.svg Great icosahedron stellation facets.svg Excavated dodecahedron stellation facets.svg Echidnahedron stellation facets.svg
The stellation process on the icosahedron creates a number of related polyhedra and مركبات بتماثل عشريني الأوجه.

Pyritohedral symmetry

Pyritohedral and tetrahedral symmetries
Coxeter diagrams CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png (pyritohedral) Uniform polyhedron-43-h01.svg
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png (tetrahedral) Uniform polyhedron-33-s012.svg
Schläfli symbol s{3,4}
sr{3,3} or
Faces 20 triangles:
8 equilateral
12 isosceles
Edges 30 (6 short + 24 long)
Vertices 12
Symmetry group Th, [4,3+], (3*2), order 24
Rotation group Td, [3,3]+, (332), order 12
Dual polyhedron Pyritohedron
Properties convex
Pseudoicosahedron flat.png
Net
Icosahedron in cuboctahedron.png Icosahedron in cuboctahedron net.png
A regular icosahedron is topologically identical to a cuboctahedron with its 6 square faces bisected on diagonals with pyritohedral symmetry.

A regular icosahedron can be distorted or marked up as a lower pyritohedral symmetry,[2] and is called a snub octahedron, snub tetratetrahedron, snub tetrahedron, and pseudo-icosahedron. This can be seen as an alternated truncated octahedron. If all the triangles are equilateral, the symmetry can also be distinguished by colouring the 8 and 12 triangle sets differently.

Pyritohedral symmetry has the symbol (3*2), [3+,4], with order 24. Tetrahedral symmetry has the symbol (332), [3,3]+, with order 12. These lower symmetries allow geometric distortions from 20 equilateral triangular faces, instead having 8 equilateral triangles and 12 congruent isosceles triangles.

These symmetries offer Coxeter diagrams: CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png and CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png respectively, each representing the lower symmetry to the regular icosahedron CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png, (*532), [5,3] icosahedral symmetry of order 120.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الإحداثيات الكارتيزية

Construction from the vertices of a truncated octahedron, showing internal rectangles.

The coordinates of the 12 vertices can be defined by the vectors defined by all the possible cyclic permutations and sign-flips of coordinates of the form (2, 1, 0). These coordinates represent the truncated octahedron with alternated vertices deleted.

This construction is called a snub tetrahedron in its regular icosahedron form, generated by the same operations carried out starting with the vector (ϕ, 1, 0), where ϕ is the golden ratio.[2]

عشروني أوجه جسن

The regular icosahedron and Jessen's icosahedron.

In Jessen's icosahedron, sometimes called Jessen's orthogonal icosahedron, the 12 isosceles faces are arranged differently such that the figure is non-convex. It has right dihedral angles.

It is scissors congruent to a cube, meaning that it can be sliced into smaller polyhedral pieces that can be rearranged to form a solid cube.

عشرونيات الأوجه الأخرى

عشروني الأوجه المعينة

The rhombic icosahedron is a zonohedron made up of 20 congruent rhombs. It can be derived from the rhombic triacontahedron by removing 10 middle faces. Even though all the faces are congruent, the rhombic icosahedron is not face-transitive.

تماثلات الهرم والمخروط

Common icosahedra with pyramid and prism symmetries include:

  • 19-sided pyramid (plus 1 base = 20).
  • 18-sided prism (plus 2 ends = 20).
  • 9-sided antiprism (2 sets of 9 sides + 2 ends = 20).
  • 10-sided bipyramid (2 sets of 10 sides = 20).
  • 10-sided trapezohedron (2 sets of 10 sides = 20).

جواسئ جونسون

Several Johnson solids are icosahedra:[3]

J22 J35 J36 J59 J60 J92
Gyroelongated triangular cupola.png
Gyroelongated triangular cupola
Elongated triangular orthobicupola.png
Elongated triangular orthobicupola
Elongated triangular gyrobicupola.png
Elongated triangular gyrobicupola
Parabiaugmented dodecahedron.png
Parabiaugmented dodecahedron
Metabiaugmented dodecahedron.png
Metabiaugmented dodecahedron
Triangular hebesphenorotunda.png
Triangular hebesphenorotunda
Johnson solid 22 net.png Johnson solid 35 net.png Johnson solid 36 net.png Johnson solid 59 net.png Johnson solid 60 net.png Johnson solid 92 net.png
16 triangles
3 squares
 
1 hexagon
8 triangles
12 squares
8 triangles
12 squares
10 triangles
 
10 pentagons
10 triangles
 
10 pentagons
13 triangles
3 squares
3 pentagons
1 hexagon

انظر أيضاً


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المراجع

  1. ^ Jones, Daniel (2003), Peter Roach, James Hartmann and Jane Setter, ed., English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN 3-12-539683-2 
  2. ^ أ ب John Baez (September 11, 2011). "Fool's Gold".
  3. ^ Icosahedron on Mathworld.

قالب:Polyhedra قالب:Polyhedron navigator