Illustration of toroidal coordinates, which are obtained by rotating a two-dimensional bipolar coordinate system about the axis separating its two foci. The foci are located at a distance 1 from the vertical z-axis. The portion of the red sphere that lies above the $xy$-plane is the σ = 30° isosurface, the blue torus is the τ = 0.5 isosurface, and the yellow half-plane is the φ = 60° isosurface. The green half-plane marks the x-z plane, from which φ is measured. The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.996, −1.725, 1.911).
Toroidal coordinates are a three-dimensional orthogonalcoordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.
The most common definition of toroidal coordinates is
together with ).
The coordinate of a point equals the angle and the coordinate equals the natural logarithm of the ratio of the distances and to opposite sides of the focal ring
The coordinate ranges are , and
Coordinate surfaces
Rotating this two-dimensional bipolar coordinate system about the vertical axis produces the three-dimensional toroidal coordinate system above. A circle on the vertical axis becomes the red sphere, whereas a circle on the horizontal axis becomes the blue torus.
Surfaces of constant correspond to spheres of different radii
that all pass through the focal ring but are not concentric. The surfaces of constant are non-intersecting tori of different radii
that surround the focal ring. The centers of the constant- spheres lie along the -axis, whereas the constant- tori are centered in the plane.
Inverse transformation
The coordinates may be calculated from the Cartesian coordinates (x, y, z) as follows. The azimuthal angle is given by the formula
The cylindrical radius of the point P is given by
and its distances to the foci in the plane defined by is given by
Geometric interpretation of the coordinates σ and τ of a point P. Observed in the plane of constant azimuthal angle , toroidal coordinates are equivalent to bipolar coordinates. The angle is formed by the two foci in this plane and P, whereas is the logarithm of the ratio of distances to the foci. The corresponding circles of constant and are shown in red and blue, respectively, and meet at right angles (magenta box); they are orthogonal.
whereas equals the angle between the rays to the foci, which may be determined from the law of cosines
Or explicitly, including the sign,
where .
The transformations between cylindrical and toroidal coordinates can be expressed in complex notation as
Scale factors
The scale factors for the toroidal coordinates and are equal
whereas the azimuthal scale factor equals
Thus, the infinitesimal volume element equals
Differential Operators
The Laplacian is given by
For a vector field
the Vector Laplacian is given by
Other differential operators such as
and can be expressed in the coordinates by substituting
the scale factors into the general formulae
found in orthogonal coordinates.
admits solution via separation of variables in toroidal coordinates. Making the substitution
A separable equation is then obtained. A particular solution obtained by separation of variables is:
where each function is a linear combination of:
Where P and Q are associated Legendre functions of the first and second kind. These Legendre functions are often referred to as toroidal harmonics.
Toroidal harmonics have many interesting properties. If you make a variable substitution then, for instance, with vanishing order (the convention is to not write the order when it vanishes) and
and
where and are the complete elliptic integrals of the first and second kind respectively. The rest of the toroidal harmonics can be obtained, for instance, in terms of the complete elliptic integrals, by using recurrence relations for associated Legendre functions.
Alternatively, a different substitution may be made (Andrews 2006)
where
Again, a separable equation is obtained. A particular solution obtained by separation of variables is then:
where each function is a linear combination of:
Note that although the toroidal harmonics are used again for the T function, the argument is rather than and the and indices are exchanged. This method is useful for situations in which the boundary conditions are independent of the spherical angle , such as the charged ring, an infinite half plane, or two parallel planes. For identities relating the toroidal harmonics with argument hyperbolic
cosine with those of argument hyperbolic cotangent, see the Whipple formulae.
Arfken G (1970). Mathematical Methods for Physicists (2nd ed.). Orlando, FL: Academic Press. pp. 112–115.
Andrews, Mark (2006). "Alternative separation of Laplace's equation in toroidal coordinates and its application to electrostatics". Journal of Electrostatics. 64 (10): 664–672. CiteSeerX10.1.1.205.5658. doi:10.1016/j.elstat.2005.11.005.
Hulme, A. (1982). "A note on the magnetic scalar potential of an electric current-ring". Mathematical Proceedings of the Cambridge Philosophical Society. 92 (1): 183–191. doi:10.1017/S0305004100059831.
Moon P H, Spencer D E (1988). "Toroidal Coordinates (η, θ, ψ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (2nd ed., 3rd revised printing ed.). New York: Springer Verlag. pp. 112–115 (Section IV, E4Ry). ISBN978-0-387-02732-6.