معادلة هلمهولتس
معادلة هلمهولتس معادلة تفاضلية جزئية من الدرجة الثانية وسميت بهذا الاسم تيمنا بالعالم الألماني هرمان فون هلمهولتز. ولها تطبيقات فيزيائية عديدة وهي معادلة مألوفة عند البحث عن حلول المعادلات الموجية في الكهرومغناطيسية وكذلك في جهد يوكاوا. وعند تطبيق الشروط الحدية تنتج معادلة هلمهولتس دائما حلا وحيدا، وجدت المعادلة عن طريق فصل المتغيرات ويستعمل في حلها وسيلة طريقة العنصر الحدي إنگليزية: BEM[1]. والمعادلة على هذا النحو.
حيث هو مؤثر لاپلاس (لاپلاسيان) و رقم الموجة و هي المعادلة الموجية. وتعد معادلة لاپلاس حالة خاصة من معادلة هلمهولتس. حيث أن معادلة لابلاس هي ذاتها معادلة هلمهولتس عندما
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .