LK-99

LK-99
LK-99 pellet.png
LK-99 3D Structure.png
3D structure
المُعرِّفات
رقم CAS
3D model (JSmol)
الخصائص
الصيغة الجزيئية }P}}Pb9
كتلة مولية 2514.04 g mol-1
المظهر grey black solid
الكثافة ≈6.699 g/cm3[1]
البنية
البنية البلورية hexagonal
الزمرة الفراغية P63/m, No. 176
ثابت العقد a = 9.843 Å, c = 7.428 Å
مركبات ذا علاقة
مركـّبات ذات علاقة
Oxypyromorphite (lead apatite)
ما لم يُذكر غير ذلك، البيانات المعطاة للمواد في حالاتهم العيارية (عند 25 °س [77 °ف]، 100 kPa).
مراجع الجدول

LK-99، هو موصل فائق في درجة حرارة الغرفة والضغط المحيط بمظهر رمادي-أسود.[2] وللمادة LK-99 بنية مسدسة معدلة بشكل طفيف من رصاصأپاتيت ويـُزعم عملها كموصل فائق تحت درجة حرارة 400 K (127 °C; 260 °F).[3][2] المادة فحصها فريق بقيادة سوكبى لي ورفاقه من معهد كوريا للعلوم والتكنولوجيا (KIST).[2] اعتبارا من 26 يوليو 2023 (2023-07-26) اكتشاف LK-99 لم يـُجرى عليه مراجعة أقران كما لم يتم نسخ التجربة بشكل مستقل.[4]

التركيب الكيميائي للـ LK-99 هو تقريباً Pb9Cu1(PO4)6O بحيث أنه —بالمقارنة بالـ رصاص-أپاتيت النقي (Pb10(PO4)6O)[5]—فإن نحو ربع أيونات Pb(2) يحل محلها أيونات Cu(II).[2] هذا الاستبدال الجزئي لأيونات Pb2+ (البالغ قياسها 133 پيكومتر) بأيونات Cu2+ (التي يبلغ قياسها 87 پيكومتر) يسبب انخفاض قدره 0.48% في الحجم، ويخلق جهداً داخلياً في المادة.[2].

الجهد الداخلي يسبب بئر كمي ذا تواصل مغاير بين Pb(1) والأكسجين ضمن الفوسفات ([PO4]3−) فيولد بئراً كمياً فائق الموصلية (SQW).[2] يزعم لي ورفاقه أنهم أظهروا أن LK-99 يعرض رد فعل لمجال مغناطيسي (أثر مايسنر) حين يـُستخدَم ترسيب كيميائي للبخار لتعريض LK-99 لعينة من النحاس غير المغناطيسي.[2] الرصاص-أپاتيت النقي هو عازل، ولكن لي ورفاقة يزعمون أن الرصاص-أباتيت المشوّب بالنحاس المُشكّل لـ LK-99 هو موصل فائق، عند درجات حرارة عالية، أو فلز.[5]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الخصائص الكيميائية

The chemical composition of LK-99 is approximately Pb9Cu(PO4)6O such that—compared to pure lead-apatite (Pb10(PO4)6O)[5]—approximately one quarter of Pb(II) ions in position 2 of the apatite structure are replaced by Cu(II) ions.[2]


التخليق

مخطط يوضح تجربة إنشاء موصل فائق في درجة حرارة الغرفة.

تنشأ الموصلية الفائقة لـ LK-99 من التشوه الهيكلي الدقيق عن طريق انكماش طفيف في الحجم (0.48٪)، وليس بسبب عوامل خارجية مثل درجة الحرارة والضغط. يحدث الانكماش بسبب استبدال أيونات Cu2 + Pb2 + (2) في شبكة العزل من Pb (2) - فوسفات ويولد الإجهاد. ينتقل بشكل متزامن إلى Pb (1) من العمود الأسطواني مما يؤدي إلى تشويه واجهة العمود الأسطواني، مما يؤدي إلى إنشاء آبار كمية فائقة التوصيل (SQWs) في الواجهة. أشارت نتائج السعة الحرارية إلى أن النموذج الجديد مناسب لشرح الموصلية الفائقة لـ LK-99. يعتبر الهيكل الفريد لـ LK-99 الذي يسمح بالحفاظ على البنية الدقيقة المشوهة في الواجهات هو العامل الأكثر أهمية الذي يحافظ عليه LK-99 ويعرض الموصلية الفائقة في درجات حرارة الغرفة والضغط المحيط.[6]

الورقة البحثية: "أول موصل فائق في درجة حرارة الغرفة والضغط المحيط". للتحميل، اضغط على الصورة

كانت هناك موصلات فائقة قريبة من درجة حرارة الغرفة أو ربما في درجة حرارة الغرفة التي كان لا بد من وضعها في منجلة الماس لتكوين الضغوط. لم تكن هذه الطريقة عملية. يمكن تصنيع هذه المواد في 34 ساعة باستخدام معدات المختبر الأساسية.

حظي النجاح الأخير في تطوير موصلات فائقة في درجة حرارة الغرفة مع كبريتيد الهيدروجين وهيدريد الإيتريوم الفائق باهتمام كبير في جميع أنحاء العالم، وهو ما تتوقعه نظرية اقتران الإلكترون-الفونون القوية مع أنماط فونون الهيدروجين عالية التردد. ومع ذلك، من الصعب تطبيقها على أجهزة التطبيق الفعلية في الحياة اليومية بسبب الضغط المرتفع بشكل هائل، ويتم بذل المزيد من الجهود للتغلب على مشكلة الضغط المرتفع.

لم يتم تخفيف الضغط الناتج عن استبدال Cu2 + لأيون Pb (2) 2+ بسبب التفرد الهيكلي لـ LK-99 وفي نفس الوقت تم نقله بشكل مناسب إلى واجهة العمود الأسطواني. بمعنى آخر، تشغل ذرات Pb (1) في واجهة العمود الأسطواني لـ LK-99 مساحة محدودة هيكليًا. تتأثر هذه الذرات بالكامل بالإجهاد والانفعال الناتج عن أيونات Cu2 +. لذلك، يمكن صنع SQWs في الواجهة بمقدار مناسب من التشويه (57) في درجة حرارة الغرفة والضغط المحيط دون ارتخاء.

من وجهة النظر هذه، يتم تخفيف الضغط الناتج عن تقلص الحجم بسبب درجة الحرارة والضغط ويختفي في أنظمة الموصلات الفائقة القائمة على CuO وFe لأن عملية الارخاء لا يمكن تقييدها بسبب الحرية الهيكلية. لذلك، يحتاجون إلى درجة حرارة مناسبة أو ضغط مناسب للحد من الحرية الهيكلية وتحقيق توليد SQW. تعد LK-99 مادة مفيدة جدًا لدراسة ألغاز الموصلية الفائقة في درجة حرارة الغرفة.

تشير جميع الأدلة والتفسيرات إلى أن LK-99 هو أول موصل فائق في درجة حرارة الغرفة والضغط المحيط. يتمتع LK-99 بالعديد من الاحتمالات لمختلف التطبيقات مثل المغناطيس والمحرك والكابل وقطار الارتفاع وكابل الطاقة والكيوبت للحاسوب الكمومي والهوائيات، إلخ. يعتقد الباحثون أن التطور الجديد سيكون حدثًا تاريخيًا جديدًا يفتح حقبة جديدة للبشرية.

الخصائص الفيزيائية

(a) Diamagnetic susceptibility measurements of LK-99, (b) sample of LK-99 partially levitating over large magnet

The material is claimed to be a room-temperature superconductor.[5]:1 The original published articles do not claim to have seen definitive features of superconductivity, zero resistance and the Meissner effect, but show the material exhibiting strong diamagnetic properties, including a video of sample of the material partially levitating on top of a large magnet,[5] which is correlated with superconductivity.

As many materials can spuriously seem like potential candidates for high-temperature superconductivity,[7] in addition to a zero-resistance mode and a clear Meissner effect, researchers generally also demonstrate other expected properties such as flux pinning, AC magnetic susceptibility, the Josephson effect, a temperature-dependent critical field and current, or a sudden jump in specific heat around the critical temperature.[8] As of August 1, none of these have been observed by the original experiment or attempted replications.[9]

الآلية المقترحة للموصلية الفائقة

Partial replacement of Pb2+ ions (measuring 133 picometres) with Cu2+ ions (measuring 87 picometres) is said to cause a 0.48% reduction in volume, creating internal stress inside the material.[2] The internal stress is claimed to cause a heterojunction quantum well between the Pb(1) and oxygen within the phosphate ([PO4]3−) generating a superconducting quantum well (SQW).[2]

Lee et al. claim to show LK-99 exhibits a response to a magnetic field (potentially due to the Meissner effect) when chemical vapor deposition is used to apply LK-99 to a non-magnetic copper sample.[2] Pure lead-apatite is an insulator, but Lee et al. claim copper-doped lead-apatite forming LK-99 is a superconductor, or at higher temperatures, a metal.[5] They do not claim to have observed any change in behavior across a transition temperature.[بحاجة لمصدر]

The paper's mechanisms were based on a 2021 paper[10] by Hyun-Tak Kim describing a novel "BR-BCS" theory of superconductivity combining a classical theory of metal-insulator transitions[11] with the standard Bardeen–Cooper–Schrieffer theory of superconductivity. They also use ideas from the theory of hole superconductivity[12] by J.E.Hirsch, another controversial work.

On 1 August 2023, three independent groups published analyses of LK-99 with density functional theory (DFT). Sinéad Griffin of Lawrence Berkeley National Laboratory analyzed it with the Vienna Ab initio Simulation Package, showing that its structure would have correlated isolated flat bands, one of the signatures of high-transition-temperature superconductors.[13] Si and Held[14] found similar flat bands and conjectured that LK-99 is a Mott or charge transfer insulator, that electron or hole doping is needed to make it (super)conducting.

اسم المركب

اسم LK-99 مشتق من الحروف الأولى للمكتشفين دكتور لي ودكتور كيم، وسنة الاكتشاف (1999).[15] قُدمت براءة الاختراع عام 2021 ومُنحت في 3 مارس 2023.[16] وفي 4 أبريل 2023 قدم مركز أبحاث الطاقة الكمومية طلب علامة تجارية كورية لـ "LK-99".[17]

The name LK-99 is from the initials of discoverers Sukbae Lee and Ji-Hoon Kim, and the year of discovery (1999).[15] The pair had originally been working with Professor Tong-Shik Choi (최동식) at Korea University in the 1990s.[18]

In 2008, researchers from Korea University founded the Quantum Energy Research Centre (퀀텀 에너지연구소; also known as Q-Centre).[19] Lee would later become CEO of Q-Centre, and Kim would become director of research and development (R&D) at Q-Centre.

مرئيات

تجربة إنشاء موصل فائق في درجة حرارة الغرفة، كوريا الجنوبية، يوليو 2023.

تاريخ النشر

An initial paper was submitted to Nature in 2020, but rejected.[18] Similarly presented research on room-temperature superconductors by Ranga P. Dias had been published in Nature earlier that year, and received with skepticism. Dias's paper was retracted in 2022 after its data was found to have been falsified.[20]

Lee and Kim filed a patent application in 2021 which was published on 3 March 2023.[16] A Korean trademark application for "LK-99" was filed on 4 April 2023 by the Q-Centre.[17]

A series of academic publications summarizing initial findings came out in 2023, with a total of seven authors across four publications. The first publication appeared on ArXiv on 22 July, listing Young-Wan Kwon, former Q-Centre CTO, as third author. A second preprint listed as third author Hyun-Tak Kim, former principal researcher at the Electronics & Telecommunications Research Institute and professor at William & Mary.

The findings were submitted to APL Materials on 23 July 2023 for review.[18]

On 28 July 2023 Kwon presented the findings of the group at a symposium held at Korea University.[21][22][23] That same day, Yonhap News Agency published a statement from Lee that Kwon had left the Q-Centre Research Institute four months previously;[19] and that the preprints had been uploaded to ArXiv without permission, but had been submitted to an academic journal for peer review.[19] Yonhap also published a statement from Hyun-Tak Kim that the papers "have many flaws" and were published without his permission.[19]

المؤلفون

Author credit and affiliation matrix:

المؤلف
الجهة
Lee, Sukbae (이석배) Kim, Ji-Hoon (김지훈) Kim, Hyun-Tak (김현탁) Im, Sungyeon (임성연) An, SooMin (안수민) Kwon, Young-Wan (권영완) Auh, Keun Ho (오근호) Choi, Dong-Shik (최동식)
HYU Professor Emeritus
KUKIST former Research Professor[19]
W&M Professor
Q-Centre (주)퀀텀에너지연구소 CEO R&D Dir. YesY YesY former CTO[19] YesY
Patent (2020)[24] 1 2
Patent (2021)[16] 1 2 3
Lee & Kim+ (2023a)[3] 1 2 3 4 5 6 Acknowledged
Lee & Kim+ (2023b)[2] 1 2 Acknowledged Acknowledged 3 Acknowledged
Lee & Kim+ (2023c)[5] 1 2 3 4 5 Acknowledged 6 Acknowledged
Kwon (2023)[21][22][23] 1


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ردود الأفعال

Materials scientists and superconductor researchers responded with skepticism.[25] The highest-temperature superconductors known at the time of publication had a critical temperature of 250 K (−23 °C; −10 °F) at pressures of over 170 gigapascals (1,680,000 atm; 24,700,000 psi). The highest-temperature superconductors at atmospheric pressure (1 atm) had a critical temperature of at most 150 K (−123 °C; −190 °F).

On 2 August 2023, the The Korean Society of Superconductivity and Cryogenics established a verification committee as a response to the controversy and unverified claims of LK-99, in order to arrive at conclusions over these claims. The verification committee is headed by Prof. Kim Chang-Young of Seoul National University and consists of members of the university, Sungkyunkwan University and Pohang University of Science and Technology. Upon formation, the verification committee did not agree that the two 22 July arXiv papers by Lee et al. nor the publicly available videos at the time supported the claim of LK-99 being a superconductor.[26]

اعتبارا من 2 أغسطس 2023 (2023-08-02), the measured properties do not prove that LK-99 is a superconductor as the published material does not fully explain how the LK-99's magnetisation can change, demonstrate its specific heat capacity, or demonstrate it crossing its transition temperature.[25] An alternative explanation for LK-99's stated partial magnetic levitation could be solely from non-superconductive diamagnetism.[27]

Public response

The claims of a room temperature superconductor in the 22 July papers by Lee et al. went viral on social media platforms the following week,[28] including Twitter.[29] Despite interest from commentators, scientists interviewed by the press remained skeptical.[30]

A video from Huazhong University of Science and Technology uploaded on 1 August 2023 apparently showing a micrometre-sized sample of LK-99 levitating went viral on Chinese social media. Gathering millions of views, it became the second most viewed video on Bilibili the next day. A researcher from the Chinese Academy of Sciences refused to comment on the video for the press, dismissing the claim as "ridiculous".[31] Public excitement grew after the video made its way to western social media, with a prediction market briefly putting the chance of successful replication at 60%.[32] As the topic of LK-99 trended on Twitter for days at the start of August, users began to create memes about "floating rocks" and suggested backing stocks in superconductors.[33] It was concurrently reported in the press that the study had caused a surge in Korean and Chinese technology stocks.[34][35]

محاولات التكرار

اعتبارا من 3 أغسطس 2023 (2023-08-03), the experiment has not been successfully replicated, despite the initial experiments being completed in 2020. No replication attempts have yet been peer-reviewed. After the July 2023 publications release, independent groups reported that they had begun attempting to reproduce the synthesis, with initial results expected within weeks.[28] However while positive results can come quickly, negative results are slow, as "falsification needs to verify all possibilities, and it will take a lot of time."[36]

The first attempts that published results did not observe levitation or diamagnetism, and their samples had high resistivity. None have published tests of flux pinning or specific heat capacity.

Some unpublished results featured brief videos which received great public attention. On 1 August 2023, a team at Huazhong University of Science and Technology in China reported producing tiny flakes that showed diamagnetic levitation, on their second attempt.[9] On 2 August 2023, a team around Prof. Sun Yue at Southeast University, claimed to have measured zero resistance in a flake of LK-99 up to a temperature of 110 K in an online video.[37] Doubts were expressed by experts in the field (from the University of Maryland) that their results had what looked like a large measurement artefact, did not show the expected dropoff to zero resistance, were quite noisy and were unable to measure resistance below 10 µΩ, which is high for measurements of superconductors.[38]

Group Country Status Result References Notes
Huazhong University of Science and Technology China Preliminary results unavailable 2023-08-01: Video claiming to show diamagnetism of small (< 0.1 mm) flakes of LK-99. Reportedly making a new batch to measure resistance. [9][31][39][40][41] Post-doctoral Wu Hao, Doctoral Yang Li, Professor Chang Haixin. Video posted to bilibili. No published report or official announcement.
Beihang University Preliminary results available No diamagnetism observed. LK-99 sample had high resistivity not consistent with superconductivity. [33][42][43] Li Liu, et al. arXiv.
Southeast University Preliminary results available Synthesized LK-99, structure confirmed by x-ray diffraction. Reported zero resistance below 100 K, but no Meissner effect. [37][44][45] Prof. Sun Yue, Prof. Shi Zhixiang, et al. arXiv.[46] Researchers from the Condensed Matter Theory Centre at the University of Maryland expressed doubts over results.[38]
Shanghai University Preliminary results available The LK-99 powder obtained by grinding was subjected to magnetic susceptibility measurements. The preliminary results showed no signs of diamagnetism in the tested temperature range. [47][48]
Council Of Scientific And Industrial Research - National Physical Laboratory of India (CSIR-NPLI) India Preliminary results available No diamagnetism observed. Measurements of superconductivity incomplete. Structure confirmed by x-ray diffraction. [49][33][42] Kapil Kumar, et al. Verified authors,[41][50][51] arXiv.
Varda Space Industries & University of Southern California United States غير معروف N/A [41][52][53] Livestreaming on Twitch. Resulting samples due to be analysed by University of Southern California after production.
Argonne National Laboratory غير معروف N/A [54][41]
University of Wollongong Australia غير معروف N/A [33] Dr. Xiaolin Wang et al.
Sungkyunkwan University South Korea غير معروف N/A [26]
Korea University غير معروف N/A
Seoul National University غير معروف N/A
Charles University Czech republic غير معروف N/A [55]

الدراسات النظرية

In the initial papers, the theoretical explanations for potential mechanisms of superconductivity in LK-99 were incomplete. Later analyses by other labs have added further simulations and theoretical evaluations of the material's electronic properties from first principles.

Group Date Country Status Result References Notes
Chinese Academy of Sciences (SYNL) 2023-07-29 China Theoretical study available First-principles study of the electronic structure of LK-99 and other variants. Expresses no opinion on room-temp superconductivity, but suggests gold-doped lead apatite may have stronger effects. [56][57] Junwen Lai, et al., arXiv.
Lawrence Berkeley National Laboratory 2023-08-01
[r 1]
United States Theoretical study available DFT analysis on a simplified 3D structure explores possible electronic structure that could be favorable for superconductivity, suggests slightly decreased lattice constant. [13][32][33][58][59] Sinéad Griffin, arXiv.
Northwest University & TU Wien 2023-08-01
[r 1]
  • China
  • Austria
Theoretical study available Similar results from DFT analysis. Conjectures superconductivity might be possible, but only when LK-99 is doped, and that diamagnetism without superconductivity is unlikely. [14] Liang Si & Karsten Held, arXiv.
CU Boulder, National Renewable Energy Laboratory, & King's College 2023-08-01
[r 1]
  • United States
  • United Kingdom
Theoretical study available Similar results from DFT analysis. Conjectures this class of material (weak interaction of copper‒oxygen, while minimising hybridisation) shows promise for high temperature superconductivity, regardless of realisation of LK-99. [60] Rafal Kurleto, et al., arXiv.
Institute for Mathematical Sciences, IIT Chennai 2023-08-02 India Theoretical study available Broad Band Mott Localization is all you need for Hot Superconductivity: Atom Mott Insulator Theory for Cu-Pb Apatite [61] G. Baskaran, arXiv.
خطأ استشهاد: علامة <ref> بالاسم " r " المحددة في <references> لها سمة المجموعة " tables " والتي لا تظهر في النص السابق.


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المراجع

  1. ^ "2514.2 AMU /(sin(60°)*9.843*9.843*7.428 Å^3)". WolframAlpha (calculation). Archived from the original on 29 July 2023. Retrieved 29 July 2023.
  2. ^ أ ب ت ث ج ح خ د ذ ر ز س Lee, Sukbae; Kim, Ji-Hoon; Kwon, Young-Wan (2023-07-22). "The First Room-Temperature Ambient-Pressure Superconductor". arXiv:2307.12008.
  3. ^ أ ب Lee, Sukbae; Kim, Ji-Hoon; Im, Sungyeon; An, Soomin; Kwon, Young-Wan; Auh, Keun Ho (2023-03-31). "Consideration for the development of room-temperature ambient-pressure superconductor (LK-99)". Korean Crystal Growth and Crystal Technology. Korea Association Of Crystal Growth. 33 (2): 61‒70. doi:10.6111/JKCGCT.2023.33.2.061. Archived from the original on 2023-07-25. Retrieved 2023-07-25.
  4. ^ Flaherty, Nick (2023-07-26). "Race is on for room temperature superconductor". Technology News. eeNews Europe. European Business. Archived from the original on 2023-07-26. Retrieved 2023-07-26. published on the pre-print server arxiv.org and still has to go through peer review
  5. ^ أ ب ت ث ج ح خ Lee, Sukbae; Kim, Ji-Hoon; Kim, Hyun-Tak; Im, Sungyeon; An, SooMin; Auh, Keun Ho (2023-07-22). "Superconductor Pb10−xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism". arXiv:2307.12037.
  6. ^ "Regular Pressure Room Temperature Superconductor is a World Changer if Mass Produced". nextbigfuture.com. 2023-07-25. Retrieved 2023-07-26.
  7. ^ قالب:Cite twitter
  8. ^ قالب:Cite twitter
  9. ^ أ ب ت Lowe, Derek (2023-08-01). "A Room-Temperature Superconductor? New Developments". Chemical News. "In the pipeline" (blog). American Association for the Advancement of Science. Archived from the original on 2023-08-01. Retrieved 2023-08-01 – via Science.org.
  10. ^ Kim, Hyun-Tak (2021-05-14). "Room-temperature-superconducting Tc driven by electron correlation". Scientific Reports (in الإنجليزية). 11 (1): 10329. doi:10.1038/s41598-021-88937-7. ISSN 2045-2322. Archived from the original on 25 July 2023. Retrieved 1 August 2023.
  11. ^ Brinkman, W. F.; Rice, T. M. (1970-11-15). "Application of Gutzwiller's Variational Method to the Metal-Insulator Transition". Physical Review B (in الإنجليزية). 2 (10): 4302–4304. doi:10.1103/PhysRevB.2.4302. ISSN 0556-2805. Archived from the original on 2 August 2023. Retrieved 1 August 2023.
  12. ^ Hirsch, J. E. (1989-01-23). "Hole superconductivity". Physics Letters A (in الإنجليزية). 134 (7): 451–455. doi:10.1016/0375-9601(89)90370-8. ISSN 0375-9601. Archived from the original on 9 July 2014. Retrieved 1 August 2023.
  13. ^ أ ب Griffin, Sinéad M. (2023-07-31). "Origin of correlated isolated flat bands in copper-substituted lead phosphate apatite". arXiv:2307.16892 [cond-mat.supr-con].
  14. ^ أ ب Si, Liang; Held, Karsten (2023-08-01). "Electronic structure of the putative room-temperature superconductor Pb9Cu(PO4)6O". arXiv:2308.00676 [cond-mat.supr-con].
  15. ^ أ ب Kim, Ji-Hoon. "About". Retrieved 2023-07-26. working on superconducting materials again, and finally, succeeded in synthesizing a room temperature and atmospheric pressure superconductor (RTAP-SC) … named LK99 (first discovered as a trace by Dr. Lee and Dr. Kim in 1999).
  16. ^ أ ب ت {{{1}}} patent {{{2}}} Archived 2023-07-26 at the Wayback Machine
  17. ^ أ ب "LK-99". Korea Intellectual Property Rights Information Service (Korean Intellectual Property Office) (4020230059989). 2023-04-04. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. http://engdtj.kipris.or.kr/engdtj/grrt1000a.do?method=biblioTMFrame&masterKey=4020230059989&index=0&kindOfReq=A&valid_fg=. Retrieved on 2023-07-25. "LK-99; … Applicant: Quantum Energy Research Centre (Q-Centre); … Status: Awaiting Examination" 
  18. ^ أ ب ت 이병철; 최정석 (2023-07-27). ‘노벨상감’ 상온 초전도체 세계 최초 개발했다는 한국 연구...과학계 ‘회의론’ 넘을까 [Korean study into world's first room-temperature superconductor … can it overcome scientific 'skepticism' … to win Nobel prize]. Chosun Biz (in الكورية). Archived from the original on 2023-07-27. Retrieved 2023-07-27. 연구를 주도한 이석배 퀀텀에너지연구소 대표는 27일 오전 조선비즈와 만나 “2020년에 처음 연구 결과를 네이처에 제출했지만 다이어스 교수 사태 때문에 네이처가 논문 게재를 부담스러워했고, 다른 전문 학술지에 먼저 게재할 것을 요구했다”며 “국내 학술지에 먼저 올려서 국내 전문가의 검증을 받고 사전공개 사이트인 아카이브에 올린 것”이라고 말했다. 이 대표는 지난 23일 국제 학술지인 ‘ALP 머터리얼즈’에도 논문을 제출했다고 덧붙였다. 세계적인 물리학 저널에 인정을 받겠다는 설명이다. … “지금은 작고한 최동식 고려대 화학과 교수와 함께 1990년대 중반부터 상온 초전도체 구현을 위해 20년에 걸쳐 연구와 실험을 진행했다”고 말했다. 이 대표는 상압상온 초전도체에 대한 특허도 출원했다고 밝혔다.
  19. ^ أ ب ت ث ج ح 조승한 (2023-07-28). 강의영 (ed.). '상온 초전도체 구현' 한국 연구에 국내외 논란…"검증 거쳐야" [Controversy both domestic and abroad regarding Korean development of room temperature superconductor … "It has to be verified"] (in الكورية). Yonhap News Agency. Archived from the original on 28 July 2023. Retrieved 2023-07-28. … 논문이 아니며 공개도 의도한 바가 아니라고 선을 그었다. … 이 대표는 이날 연합뉴스와 통화에서 "다른 저자들의 허락 없이 권 연구교수가 임의로 아카이브에 게재한 것"이라며 "아카이브에 내려달라는 요청을 해둔 상황" 이라고 주장했다. … 이 대표는 권 연구교수가 퀀텀에너지연구소 최고기술책임자(CTO)로 있었지만 4개월 전 이사직을 내려놓고 현재는 회사와 관련이 없다고도 밝혔다. … 고려대 관계자에 따르면 권 연구교수는 현재 학교와도 연락이 닿지 않는 상황으로 알려졌다.
  20. ^ Garisto, Dan (2023-07-25). "'A very disturbing picture': another retraction imminent for controversial physicist". Nature (in الإنجليزية). doi:10.1038/d41586-023-02401-2. Archived from the original on 27 July 2023. Retrieved 28 July 2023.
  21. ^ أ ب Kwon, Young-Wan (28 July 2023). "The World First: Room-Temperature Ambient-Pressure Superconductor" in MML 2023: 11th International Symposium on Metallic Multilayers., Korea University, Seoul, Korea: The Korean Magnetics Society. 
  22. ^ أ ب قالب:Cite twitter
  23. ^ أ ب قالب:Cite twitter
  24. ^ {{{1}}} patent {{{2}}}
  25. ^ أ ب Padavic-Callaghan, Karmela (2023-07-26). "Room-temperature superconductor 'breakthrough' met with scepticism". New Scientist. Archived from the original on 2023-07-26. Retrieved 2023-07-26. Speaking to New Scientist, Hyun-Tak Kim at the College of William & Mary in Virginia says he will support anyone trying to replicate his team's work. … [HT] Kim has only co-authored one of the arXiv papers, while the other is authored by his colleagues at the Quantum Energy Research Centre in South Korea, … Both papers present similar measurements, however [HT] Kim says that the second [3-author] paper contains "many defects" and was uploaded to arXiv without his permission. … Once the findings are published in a peer-reviewed journal, … [HT] Kim says … he will support anyone who wants to create and test LK-99
  26. ^ أ ب Kim, Jin-Won. Haeyoung Park (ed.). "S.Korean academics to verify truth of room-temperature superconductor". Tech, Media & Telecom. The Korea Economic Daily Global Edition (in الإنجليزية). Archived from the original on 2 August 2023. Retrieved 2023-08-02.
  27. ^ Ritchie, Stuart (2023-07-26). "The latest mega-breakthrough on room-temperature superconductors is probably nonsense". i. Archived from the original on 2023-07-26. Retrieved 2023-07-27. What about that levitation video? Dr Sven Friedemann, associate professor at the University of Bristol's School of Physics, told i that it, and other data in the paper, "could stem from other phenomena". Graphene, … "is also diamagnetic [displaying repulsion like a superconductor] and can produce weak levitation". The video, in other words, could have a non-superconductor explanation.
  28. ^ أ ب Garisto, Dan (2023-07-27). "Viral New Superconductivity Claims Leave Many Scientists Skeptical". Materials science. Scientific American (in الإنجليزية). Archived from the original on 27 July 2023. Retrieved 2023-07-28.
  29. ^ Pearson, Jordan (2023-07-27). "Viral Superconductor Study Claims to 'Open a New Era for Humankind.' Scientists Aren't So Sure". www.vice.com (in الإنجليزية الأمريكية). Vice News. Archived from the original on 2 August 2023. Retrieved 2023-08-02.
  30. ^ Griffin, Andrew (2023-07-27). "Superconductor breakthrough could represent 'biggest physics discovery of a lifetime' – but scientists urge caution". www.independent.co.uk. The Independent. Archived from the original on 28 July 2023. Retrieved 2023-08-02.
  31. ^ أ ب Peng, Dannie (2023-08-02). "Superconductor breakthrough could represent 'biggest physics discovery of a lifetime' – but scientists urge caution". www.scmp.com. South China Morning Post. Archived from the original on 2 August 2023. Retrieved 2023-08-02.
  32. ^ أ ب Griffin, Andrew (2023-08-01). "LK-99: Excitement rises over possibly revolutionary 'miracle material' – but there is still no good reason to believe it exists". www.independent.co.uk. The Independent. Archived from the original on 2 August 2023. Retrieved 2023-08-02.
  33. ^ أ ب ت ث ج Ryan, Jackson (2023-08-02). "LK-99 Superconductor: Maybe a Breakthrough, Maybe Not So Much". www.cnet.com. CNET. Archived from the original on 2023-08-02. Retrieved 2023-08-02.
  34. ^ "Superconductor LK-99 Breakthrough Buzz Spurs China, Korea Tech Rally". www.bloomberg.com. Bloomberg News. 2023-08-01. Archived from the original on 2023-08-02. Retrieved 2023-08-02.
  35. ^ Culpan, Tim (2023-08-02). Written at Bloomberg News. "LK-99 and the Desperation for Scientific Discovery". Washington Post. Retrieved 2023-08-03.
  36. ^ 科学调查局. 室温超导复现实验-全流程_哔哩哔哩_bilibili. www.bilibili.com (in الصينية المبسطة). Archived from the original on 31 July 2023. Retrieved 2023-07-31.
  37. ^ أ ب "Research on LK-99 Superconductor at Southeast University". targum.video. Retrieved 2023-08-02.
  38. ^ أ ب قالب:Cite twitter
  39. ^ 关山口男子技师. "LK-99验证_哔哩哔哩_bilibili". www.bilibili.com (in الصينية المبسطة). Archived from the original on 1 August 2023. Retrieved 2023-08-01.
  40. ^ 关山口男子技师. 补充视频_哔哩哔哩_bilibili. www.bilibili.com (in الصينية المبسطة). Archived from the original on 1 August 2023. Retrieved 2023-08-01.
  41. ^ أ ب ت ث Ferreira, Becky; Pearson, Jordan (1 August 2023). "DIY Scientists and Institutions Are Racing to Replicate the Room-Temperature Superconductor". Vice (in الإنجليزية). Archived from the original on 2 August 2023. Retrieved 2 August 2023.
  42. ^ أ ب Tran, Tony Ho (2023-08-01). "Sorry, But the New LK-99 Superconductor Breakthrough Might Be Total BS". www.thedailybeast.com. The Daily Beast. Archived from the original on 1 August 2023. Retrieved 2023-08-02.
  43. ^ قالب:Cite arxiv
  44. ^ @andercot (2023-08-02). "First independent measurement of zero resistance in LK-99" (Tweet). Retrieved 2023-08-02 – via Twitter. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  45. ^ Qiang Hou; Wei Wei; Xin Zhou; Yue Sun; Zhixiang Shi (2 Aug 2023). "Observation of zero resistance above 100∘ K in Pb10−xCux(PO4)6O". arXiv:2308.01192 [cond-mat.supr-con].
  46. ^ -东南大学超导物理小组. www.scseu.cn. Archived from the original on 31 July 2023. Retrieved 2023-07-31.
  47. ^ "The latest results of the Shanghai University experiment: LK-99 crystal does not appear diamagnetism[上大实验最新结果:LK-99晶体未出现抗磁性_夜线约见_看看新闻]". www.kankanews.com(Simplified Chinese). Retrieved 2023-08-03.
  48. ^ "Claims of Room Temperature and Ambient Pressure Superconductor". SpaceBattles (in الإنجليزية الأمريكية). 2023-07-25. Retrieved 2023-08-03.
  49. ^ Kumar, Kapil (2023-07-31). "Synthesis of possible room temperature superconductor LK-99:Pb9Cu(PO4)6O". arXiv:2307.16402.
  50. ^ "People@CSIR-NPL – NPL" (in الإنجليزية). Archived from the original on 8 June 2023. Retrieved 2023-07-31.
  51. ^ "Dr. V.P.S. Awana, PhD - Editorial Board - Superconductivity - Journal - Elsevier". www.journals.elsevier.com. Retrieved 2023-07-31.
  52. ^ قالب:Cite twitter
  53. ^ Barber, Gregory (2023-08-02). "Inside the DIY Race to Replicate LK-99". Wired. Archived from the original on 2 August 2023. Retrieved 2 August 2023.
  54. ^ Cho, Adrian (2023-07-27). "A spectacular superconductor claim is making news. Here's why experts are doubtful". Physics News. Science.org. American Association for the Advancement of Science. doi:10.1126/science.adk0021. Archived from the original on 29 July 2023. Retrieved 2023-07-29. Michael Norman, a theorist at Argonne National Laboratory … says, researchers at Argonne and elsewhere are already trying to replicate the experiment.
  55. ^ قالب:Cite twitter
  56. ^ Lai, Junwen; Jiangxu, Li; Peitao, Liu; Yan, Sun; Xing-Qiu, Chen (29 Jul 2023). "First-principles study on the electronic structure of Pb10-xCux(PO4)6O (x=0, 1)". arXiv:2307.16040 [cond-mat.mtrl-sci].
  57. ^ "Breakthrough in Superconductivity: Huazhong University Scientists Report First Successful Replication of LK-99". Beijing Times. 1 August 2023. Archived from the original on 2 August 2023. Retrieved 2 August 2023.
  58. ^ قالب:Cite twitter
  59. ^ قالب:Cite twitter
  60. ^ Kurleto, Rafal; Lany, Stephan; Pashov, Dimitar; Acharya, Swagata; van Schilfgaarde, Mark; Dessau, Daniel S. (2023-08-01). "Pb-apatite framework as a generator of novel flat-band CuO based physics, including possible room temperature superconductivity". arXiv:2308.00698 [cond-mat.supr-con].
  61. ^ Baskaran, G (August 2, 2023). "Broad Band Mott Localization is all you need for Hot Superconductivity: Atom Mott Insulator Theory for Cu-Pb Apatite".

للاستزادة

وصلات خارجية


خطأ استشهاد: وسوم <ref> موجودة لمجموعة اسمها "r"، ولكن لم يتم العثور على وسم <references group="r"/>