عدد أولي مكعبي
A cuban prime is a prime number that is also a solution to one of two different specific equations involving differences between third powers of two integers x and y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
First series
This is the first of these equations:
i.e. the difference between two successive cubes. The first few cuban primes from this equation are
- 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227 (المتتالية A002407 في OEIS)
The formula for a general cuban prime of this kind can be simplified to . This is exactly the general form of a centered hexagonal number; that is, all of these cuban primes are centered hexagonal.
As of July 2023[تحديث] the largest known has 3,153,105 digits with ,[2] found by R.Propper and S.Batalov.
Second series
The second of these equations is:
which simplifies to . With a substitution it can also be written as .
The first few cuban primes of this form are:
- 13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313 (المتتالية A002648 في OEIS)
The name "cuban prime" has to do with the role cubes (third powers) play in the equations.[4]
See also
Notes
- ^ Allan Joseph Champneys Cunningham, On quasi-Mersennian numbers, Mess. Math., 41 (1912), 119-146.
- ^ Caldwell, Prime Pages
- ^ Cunningham, Binomial Factorisations, Vol. 1, pp. 245-259
- ^ Caldwell, Chris K. "cuban prime". PrimePages. University of Tennessee at Martin. Retrieved 2022-10-06.
References
- Caldwell, Dr. Chris K., ed., The Prime Database: 3^4043119 + 3^2021560 + 1, University of Tennessee at Martin, https://t5k.org/primes/page.php?id=136214, retrieved on July 31, 2023
- Phil Carmody, Eric W. Weisstein and Ed Pegg, Jr., Cuban Prime at MathWorld.
- Cunningham, A. J. C. (1923), Binomial Factorisations, London: F. Hodgson
- Cunningham, A. J. C. (1912), On Quasi-Mersennian Numbers, 41, England: Macmillan and Co., pp. 119–146