كتلة الأرض
Earth Mass | |
---|---|
معلومات عامة | |
نظام الوحدات | astronomy |
وحدة قياس | mass |
الرمز | M⊕ |
التحويلات | |
1 M⊕ في ... | ... يساوي ... |
SI base unit | (5.9722±0.0006)×1024 kg |
U.S. customary | ≈ 1.3166×1025 pounds |
كتلة الأرض (M⊕، حيث ⊕ هو الرمز الفلكي القياسي لكوكب الأرض) هي وحدة كتلة مساوية كتلة الأرض. هذه القيمة تضم الغلاف الجوي ولكن تستبعد القمر. أفضل تقدير حالي لكتلة الأرض هو M⊕ = (5.9722±0.0006)×1024 kg[2][3] كتلة الأرض هي وحدة كتلة معيارية في الفلك تُستخدم لتوضيح كتل الكواكب الأخرى، بما في ذلك terrestrial planets الصخرية والكواكب الخارجية.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
القيمة
كتلة الأرض تُقدر بالتالي:
- ,
والتي يمكن التعبير عنها كدالة في الكتلة الشمسية كالتالي:
- .
الجرم | كتلة الأرض M⊕ | Ref |
---|---|---|
القمر | 0.0123000371(4) | [4] |
الشمس | 332946.0487±0.0007 | [3] |
عطارد | 0.0553 | [5] |
الزهرة | 0.815 | [5] |
الأرض | 1 | حسب التعريف |
المريخ | 0.107 | [5] |
المشتري | 317.8 | [5] |
زحل | 95.2 | [5] |
أورانوس | 14.5 | [5] |
نپتون | 17.1 | [5] |
گليزه 667 Cc | 3.8 | [6] |
كپلر-442b | 1.0 – 8.2 | [7] |
نسبة كتلة الأرض إلى الكتلة القمرية قد قيست بدقة كبيرة. The current best estimate is:[8]
تاريخ القياس
The mass of Earth is measured indirectly by determining other quantities such as Earth's density, gravity, or gravitational constant.
استخدام حاصل ضرب GM⊕
Modern methods of determining the mass of Earth involve calculating the gravitational coefficient of the Earth and dividing by the Newtonian constant of gravitation,
The GM⊕ product is determined using laser ranging data from Earth-orbiting satellites.[9] The GM⊕ product can also be calculated by observing the motion of the Moon[10] or the period of a pendulum at various elevations. These methods are less precise than observations of artificial satellites.
استخدام ثابت شاقولي
Earlier efforts (after 1798) to determine Earth's mass involved measuring G directly as in the Cavendish experiment. Earth's mass could be then found by combining two equations; Newton's second law, and Newton's law of universal gravitation:[بحاجة لمصدر]
Substituting earth's gravity, g for the acceleration term, and combining the two equations gives
- .
The equation can then be solved for M⊕
With this method, the values for Earth's surface gravity, Earth's radius, and G were measured empirically.
استخدام انحراف بندول
Before the Cavendish Experiment, attempts to "weigh" Earth involved estimating the mean density of Earth and its volume.[بحاجة لمصدر] The volume was well understood through surveying techniques, and the density was measured by observing the slight deflection of a pendulum near a mountain, as in the Schiehallion experiment. The Earth mass could then be calculated as:[بحاجة لمصدر]
- .
This technique resulted in a mass estimate that is 20% lower than today's accepted value.
Using the period of a pendulum
An expedition from 1737 to 1740 by French scientist Pierre Bouguer attempted to determine the density of Earth by measuring the period of a pendulum (and therefore the strength of gravity) as a function of elevation. The experiments were carried out in Ecuador and Peru, on Pichincha Volcano and mount Chimborazo. Bouguer's work led to an estimate that is two to three times larger than the true mass of Earth. However, this historical determination showed that the Earth was not hollow nor filled with water, as some had argued at the time.[11] Modern gravitometers are now used for measuring the local gravitational field. They surpass the accuracy limitations of pendulums.
تجارب بالبندول في القرن 19
Much later, in 1821, Francesco Carlini determined a density value of ρ = 4.39 g/cm3 through measurements made with pendulums in the Milan area. This value was refined in 1827 by Edward Sabine to 4.77 g/cm3, and then in 1841 by Carlo Ignazio Giulio to 4.95 g/cm3. On the other hand, George Biddell Airy sought to determine ρ by measuring the difference in the period of a pendulum between the surface and the bottom of a mine. The first tests took place in Cornwall between 1826 and 1828. The experiment was a failure due to a fire and a flood. Finally, in 1854, Airy got the value 6.6 g/cm3 by measurements in a coal mine in Harton, Sunderland. Airy's method assumed that the Earth had a spherical stratification. Later, in 1883, the experiments conducted by Robert von Sterneck (1839 to 1910) at different depths in mines of Saxony and Bohemia provided the average density values ρ between 5.0 and 6.3 g/cm3. This led to the concept of isostasy, which limits the ability to accurately measure ρ, by either the deviation from vertical of a plumb line or using pendulums. Despite the little chance of an accurate estimate of the average density of the Earth in this way, Thomas Corwin Mendenhall in 1880 realized a gravimetry experiment in Tokyo and at the top of Mount Fuji. The result was ρ = 5.77 g/cm3.[بحاجة لمصدر]
التفاوت
Earth's mass is constantly changing due to many contributors. Earth primarily gains mass from micrometeorites and cosmic dust, whereas it loses hydrogen and helium gas. The combined effect is a net loss of material, though the annual mass deficit represents an inconsequential fraction of its total mass,[أ] or even the uncertainty in its mass. So its inclusion does not affect total mass calculations. A number of other mechanisms are responsible for mass adjustments, and can be classified into two categories: physical transfer of matter, and mass that is gained or lost through the absorption or release of energy due to the mass–energy equivalence principle. Several examples are provided for completeness, but their relative contribution is negligible.
المكسب الصافي
الفقدان الصافي
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
انظر أيضاً
ملاحظات
الهامش
- ^ Attributed by Pappus of Alexandria (Synagoge [Συναγωγή] VIII, 4th century), as « Δός μοί ποῦ στῶ, καὶ κινῶ τὴν Γῆν ». Engraving from Mechanic's Magazine (cover of bound Volume II, Knight & Lacey, London, 1824).
- ^ "Solar System Exploration: Earth: Facts & Figures". NASA. 13 Dec 2012. Retrieved 2012-01-22.
- ^ أ ب "2016 Selected Astronomical Constants" in The Astronomical Almanac Online, USNO–UKHO, http://asa.usno.navy.mil/.
- ^ Pitjeva, E.V.; Standish, E.M. (2009-04-01). "Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit". Celestial Mechanics and Dynamical Astronomy. 103 (4): 365–372. Bibcode:2009CeMDA.103..365P. doi:10.1007/s10569-009-9203-8. Retrieved 2016-02-12.
- ^ أ ب ت ث ج ح خ "Planetary Fact Sheet – Ratio to Earth". nssdc.gsfc.nasa.gov. Retrieved 2016-02-12.
- ^ "The Habitable Exoplanets Catalog – Planetary Habitability Laboratory @ UPR Arecibo".
- ^ "HEC: Data of Potential Habitable Worlds".
- ^ Konopliv, A (December 2002). "A Global Solution for the Gravity Field, Rotation, Landmarks, and Ephemeris of Eros" (PDF). Icarus. 160 (2): 289–299. Bibcode:2002Icar..160..289K. doi:10.1006/icar.2002.6975.
- ^ Ries, J.C.; Eanes, R.J.; Shum, C.K.; Watkins, M.M. (20 March 1992). "Progress in the determination of the gravitational coefficient of the Earth". Geophysical Research Letters. 19 (6). Bibcode:1992GeoRL..19..529R. doi:10.1029/92GL00259. Retrieved 5 February 2016.
- ^ Shuch, H. Paul (July 1991). "Measuring the mass of the earth: the ultimate moonbounce experiment" (PDF). Proceedings, 25th Conference of the Central States VHF Society. American Radio Relay League: 25–30. Retrieved 28 February 2016.
- ^ N. Kollerstrom (1992). "The hollow world of Edmond Halley". Journal for History of Astronomy. 23: 185–192. archive
- ^ أ ب ت Saxena, Shivam; Chandra, Mahesh (May 2013). "Loss in Earth Mass due to Extraterrestrial Space Exploration Missions". International Journal of Scientific and Research Publications. 3 (5): 1. Retrieved 9 February 2016.
- ^ "Spacecraft Measurements of the Cosmic Dust Flux", Herbert A. Zook. doi:10.1007/978-1-4419-8694-8_5
- ^ Carter, Lynn. "How many meteorites hit Earth each year?". Ask an Astronomer. The Curious Team, Cornell University. Retrieved 6 February 2016.
- ^ McDonald, Charlotte (31 January 2012). "Who, What, Why: Is the Earth getting lighter?". BBC Magazine. BBC News. Retrieved 9 February 2016.
- ^ "Fantasy and Science Fiction: Science by Pat Murphy & Paul Doherty".
- ^ "Earth Loses 50,000 Tonnes of Mass Every Year". SciTech Daily.
- ^ "World energy consumption – beyond 500 exajoules". Resilience.
- ^ Tkalčić, Hrvoje; Young, Mallory; Bodin, Thomas; Ngo, Silvie; Sambridge, Malcolm (12 May 2013). "The shuffling rotation of the Earth's inner core revealed by earthquake doublets". Nature Geoscience. 6: 497–502. Bibcode:2013NatGe...6..497T. doi:10.1038/ngeo1813.
- ^ "Uranium Markets".
- Articles containing Ancient Greek (to 1453)-language text
- Short description is different from Wikidata
- مقالات ذات عبارات بحاجة لمصادر
- Articles with unsourced statements from February 2016
- Articles with too many examples from September 2016
- All articles with too many examples
- Wikipedia articles with style issues from September 2016
- Articles with unsourced statements from January 2016
- Articles with unsourced statements from June 2015
- Units of mass
- علم الكواكب
- جيولوجيا كوكبية
- Units of measurement in astronomy
- الأرض
- Human-based units of measurement