قطع ناقص
القطع الناقص أو الإهليلج (ellipse) (الكلمة آتية من اللاتينية بمعنى نقص absence) هو المنحني الجبري المستوي الذي يحقق أن مجموع بعد أي نقطة من هذا المنحنى عن نقطتين ثابتين داخله ( تدعيان البؤرتين foci واحده بؤرة focus) يبقى ثابتا.
القطع الناقص هو أيضا أحد أنواع القطوع المخروطية, فعند قطع مخروط بمستوى لا يمر بقاعدته يصبح التقاطع بين المخروط والمستوي قطعا ناقصا.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
عناصر القطع الناقص
رسم القطوع الناقصة
طريقة الدبابيس والحبل
طريقة ترامل
طريقة متوازي الأضلاع
تقريبات القطوع الناقصة
الهندسة الإقليدية
التعريف
المعادلات
The equation of an ellipse whose major and minor axes coincide with the Cartesian axes is
This means any noncircular ellipse is a squashed circle. If we draw an ellipse twice as long as it is wide, and draw the circle centered at the ellipse's center with diameter equal to the ellipse's longer axis, then on any line parallel to the shorter axis the length within the circle is twice the length within the ellipse. So the area enclosed by an ellipse is easy to calculate—it's the lengths of elliptic arcs that are hard.
البؤرة
The distance from the center C to either focus is f = ae, which can be expressed in terms of the major and minor radii:
Eccentricity
The eccentricity of the ellipse (commonly denoted as either e or ) is
(where again a and b are one-half of the ellipse's major and minor axes respectively, and f is the focal distance) or, as expressed in terms using the flattening factor
Directrix
Ellipse as hypotrochoid
The ellipse is a special case of the hypotrochoid when R = 2r.
المساحة
The area enclosed by an ellipse is:
where a and b are one-half of the ellipse's major and minor axes respectively.
An ellipse defined implicitly by has area .
The area formula πab is easy to understand: start with a circle of radius b (so its area is πb2) and stretch it by a factor a/b to make an ellipse. This increases the area by the same factor: πb2(a/b) = πab.
For the ellipse in standard form, , and hence , with horizontal intercepts at ± a, the area can be computed as twice the integral of the positive square root:
The second integral is the area of a circle of radius , i.e., ; thus we have .
The area formula can also be proven in terms of polar coordinates using the coordinate transformation
Any point inside the ellipse with x-intercept a and y-intercept b can be defined in terms of r and , where and .
To define the area differential in such coordinates we use the Jacobian matrix of the coordinate transformation times : . We now integrate over the ellipse to find the area: .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
المحيط
The circumference of an ellipse is:
where again a is the length of the semi-major axis and e is the eccentricity and where the function is the complete elliptic integral of the second kind. This may be evaluated directly using the Carlson symmetric form[1] as illustrated by the following python code (this converges quadratically):
def EllipseCircumference(a, b):
"""
Compute the circumference of an ellipse with semi-axes a and b.
Require a >= 0 and b >= 0. Relative accuracy is about 0.5^53.
"""
import math
x, y = max(a, b), min(a, b)
digits = 53; tol = math.sqrt(math.pow(0.5, digits))
if digits * y < tol * x: return 4 * x
s = 0; m = 1
while x - y > tol * y:
x, y = 0.5 * (x + y), math.sqrt(x * y)
m *= 2; s += m * math.pow(x - y, 2)
return math.pi * (math.pow(a + b, 2) - s) / (x + y)
The exact infinite series is:
or
where is the double factorial. Unfortunately, this series converges rather slowly; however, by expanding in terms of , Ivory[2] and Bessel[3] derived an expression which converges much more rapidly,
A good approximation is Ramanujan's:
and a better approximation is
For the special case where the minor axis is half the major axis, these become:
or, as an estimate of the better approximation,
More generally, the arc length of a portion of the circumference, as a function of the angle subtended, is given by an incomplete elliptic integral.
The inverse function, the angle subtended as a function of the arc length, is given by the elliptic functions.[بحاجة لمصدر]
الأوتار
The midpoints of a set of parallel chords of an ellipse are collinear.[4]
Latus rectum
The chords of an ellipse which are perpendicular to the major axis and pass through one of its foci are called the latera recta of the ellipse. The length of each latus rectum is 2b2/a.
الانحناء
The curvature is
المعادلة الجبرية
جبريا, القطع الناقص هو منحنى في المستوى الكارتيزي معرف بالمعادلة:
بحيث ان جميع المعاملات حقيقية و بحيث . وجود أكثر من حل لقيم معينة لx, يعرف زوجا من النقاط (x, y1) و (x, y2) تقع على القطع الناقص.
ولإيجاد القانون العام للقطع الناقص, نستعمل التعريف التالي:
حيث:
- P هي نقطة (x,y) تقع على القطع
- S البؤرة
- e معامل الاختلاف المركزي ( e<1 )
- و m هي مسقط العمودي ل P على الدليل
و يعبر القانون (أو المعادلة) على كون نسبة المسافة بين النقطة والبؤرة و المسافة بين النقطة والدليل ثابثة وتساوي معامل الاختلاف المركزي e.
في حساب المثلثات
الشكل المتغير العام
An ellipse in general position can be expressed parametrically as the path of a point , where
as the parameter t varies from 0 to 2π. Here is the center of the ellipse, and is the angle between the -axis and the major axis of the ellipse.
الشكل المتغير في الوضع التعريفي
For an ellipse in canonical position (center at origin, major axis along the X-axis), the equation simplifies to
Note that the parameter t (called the eccentric anomaly in astronomy) is not the angle of with the X-axis.
الشكل القطبي بالنسبة للمركز
In polar coordinates, with the origin at the center of the ellipse and with the angular coordinate measured from the major axis, the ellipse's equation is
الشكل القطبي بالنسبة للبؤرة
If instead we use polar coordinates with the origin at one focus, with the angular coordinate still measured from the major axis, the ellipse's equation is
where the sign in the denominator is negative if the reference direction points towards the center (as illustrated on the right), and positive if that direction points away from the center.
In the slightly more general case of an ellipse with one focus at the origin and the other focus at angular coordinate , the polar form is
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الشكل القطبي العام
The following equation on the polar coordinates (r, θ) describes a general ellipse with semidiameters a and b, centered at a point (r0, θ0), with the a axis rotated by φ relative to the polar axis:[بحاجة لمصدر]
حيث
Angular eccentricity
The angular eccentricity is the angle whose sine is the eccentricity e; that is,
درجات الحرية
القطوع الناقصة في الفيزياء
العاكسات الإهليلجية وعلم الصوت
مدارات الكواكب
- مقالة مفصلة: مدار إهليلجي
For elliptical orbits, useful relations involving the eccentricity are:
حيث
- is the radius at apoapsis (the farthest distance)
- is the radius at periapsis (the closest distance)
- is the length of the semi-major axis
Also, in terms of and , the semi-major axis is their arithmetic mean, the semi-minor axis is their geometric mean, and the semi-latus rectum is their harmonic mean. In other words,
- .
المتأرجحات المتناغمة
انظر أيضاً
- Apollonius of Perga, the classical authority
- Cartesian oval, a generalization of the ellipse
- Circumconic and inconic
- Conic section
- Ellipsoid, a higher dimensional analog of an ellipse
- Elliptic coordinates, an orthogonal coordinate system based on families of ellipses and hyperbolae
- Elliptical distribution, in statistics
- Elliptic partial differential equation
- Great ellipse
- Hyperbola
- Kepler's laws of planetary motion
- Matrix representation of conic sections
- n-ellipse, a generalization of the ellipse for n foci
- Oval
- Parabola
- Proofs involving the ellipse
- Spheroid, the ellipsoid obtained by rotating an ellipse about its major or minor axis
- Steiner circumellipse, the unique ellipse circumscribing a triangle and sharing its centroid
- Steiner inellipse, the unique ellipse inscribed in a triangle with tangencies at the sides' midpoints
- Superellipse, a generalization of an ellipse that can look more rectangular or more "pointy"
- True, eccentric, and mean anomaly
- Geodesics on an ellipsoid
المراجع
- Besant, W.H. (1907). "Chapter III. The Ellipse". Conic Sections. London: George Bell and Sons. p. 50.
{{cite book}}
: Invalid|ref=harv
(help) - Miller, Charles D.; Lial, Margaret L.; Schneider, David I. (1990). Fundamentals of College Algebra (3rd ed.). Scott Foresman/Little. p. 381. ISBN 0-673-38638-4.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Coxeter, H.S.M. (1969). Introduction to Geometry (2nd ed.). New York: Wiley. pp. 115–9.
- Ellipse at Planetmath
- Eric W. Weisstein, Ellipse at MathWorld.
الهامش
- ^ DOI:10.1007/BF02198293
This citation will be automatically completed in the next few minutes. You can jump the queue or expand by hand - ^ Ivory, J. (1798). "A new series for the rectification of the ellipsis". Transactions of the Royal Society of Edinburgh. 4: 177–190.
{{cite journal}}
: CS1 maint: ref duplicates default (link) - ^ Bessel, F. W. (2010). "The calculation of longitude and latitude from geodesic measurements (1825)". Astron. Nachr. 331 (8): 852–861. arXiv:0908.1824. doi:10.1002/asna.201011352. English translation of Astron. Nachr. 4, 241-254 (1825).
{{cite journal}}
: CS1 maint: postscript (link) - ^ Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979.
وصلات خارجية
- Video: How to draw Ellipse
- Apollonius' Derivation of the Ellipse at Convergence
- The Shape and History of The Ellipse in Washington, D.C. by Clark Kimberling
- Collection of animated ellipse demonstrations. Ellipse, axes, semi-axes, area, perimeter, tangent, foci.
- Eric W. Weisstein, Ellipse as hypotrochoid at MathWorld.
- Ivanov, A.B. (2001), "Ellipse", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104