الأعداد المصرية
أنظمة الأرقام حسب الثقافة | |
---|---|
الأرقام الهندية العربية | |
العربية المغربية العربية المشرقية الخمير |
العائلة الهندية البراهمية التايلندية |
أرقام شرق آسيا | |
الصينية سوژو عصي العد |
اليابانية الكورية |
الأرقام الأبجدية | |
أبجد الأرمنية السيريلية جعيز |
العبرية اليونانية (Ionian) أريابهاتا |
أنظمة أخرى | |
Attic البابلية المصرية الإتروسكية |
المايا الرومانية Urnfield |
قائمة مواضيع نظم الأرقام | |
Positional systems by base | |
عشري (10) | |
2, 4, 8, 16, 32, 64 | |
1, 3, 9, 12, 20, 24, 30, 36, 60, more… | |
The system of ancient Egyptian numerals was used in Ancient Egypt from around 3000 BCE[1] until the early first millennium CE. It was a system of numeration based on multiples of ten, often rounded off to the higher power, written in hieroglyphs. The Egyptians had no concept of a place-valued system such as the decimal system.[2] The hieratic form of numerals stressed an exact finite series notation, ciphered one-to-one onto the Egyptian alphabet.[بحاجة لمصدر]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digits and numbers
The following hieroglyphs were used to denote powers of ten:
Value | 1 | 10 | 100 | 1,000 | 10,000 | 100,000 | 1 million, or many | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hieroglyph |
|
|
|
|
|
|
| ||||||||||||||
Gardiner's sign list ID | Z1 | V20 | V1 | M12 | D50 | I8 | C11 | ||||||||||||||
Description | Single stroke | Cattle hobble | Coil of rope | Water lily (also called lotus) |
Bent finger | Tadpole | Heh[3] |
Multiples of these values were expressed by repeating the symbol as many times as needed. For instance, a stone carving from Karnak shows the number 4622 as:
|
Egyptian hieroglyphs could be written in both directions (and even vertically). In this example the symbols decrease in value from top to bottom and from left to right.On the original stone carving, it is right-to-left, and the signs are thus reversed.[بحاجة لمصدر]
Zero and negative numbers
nfr |
heart with trachea beautiful, pleasant, good |
|
---|
By 1740 BCE, the Egyptians had a symbol for zero in accounting texts. The symbol nfr (𓄤), meaning beautiful, was also used to indicate the base level in drawings of tombs and pyramids and distances were measured relative to the base line as being above or below this line.[4]
Fractions
Rational numbers could also be expressed, but only as sums of unit fractions, i.e., sums of reciprocals of positive integers, except for 2⁄3 and 3⁄4. The hieroglyph indicating a fraction looked like a mouth, which meant "part":
|
Fractions were written with this fractional solidus, i.e., the numerator 1, and the positive denominator below. Thus, 1⁄3 was written as:
|
Special symbols were used for 1⁄2 and for the non-unit fractions 2⁄3 and, less frequently, 3⁄4:
|
|
|
If the denominator became too large, the "mouth" was just placed over the beginning of the "denominator":
|
Addition and subtraction
For plus and minus signs, the hieroglyphs
|
(D54, D55) were used: if the feet pointed into the direction of writing, it signified addition, otherwise subtraction.[5]
Written numbers
As with most modern day languages, the ancient Egyptian language could also write out numerals as words phonetically, just like one can write thirty instead of "30" in English. The word (thirty), for instance, was written as
|
while the numeral (30) was
|
This was, however, uncommon for most numbers other than one and two and the signs were used most of the time.[بحاجة لمصدر]
Hieratic numerals
As administrative and accounting texts were written on papyrus or ostraca, rather than being carved into hard stone (as were hieroglyphic texts), the vast majority of texts employing the Egyptian numeral system utilize the hieratic script. Instances of numerals written in hieratic can be found as far back as the Early Dynastic Period. The Old Kingdom Abusir Papyri are a particularly important corpus of texts that utilize hieratic numerals.[بحاجة لمصدر]
Boyer proved 50 years ago[when?] that hieratic script used a different numeral system, using individual signs for the numbers 1 to 9, multiples of 10 from 10 to 90, the hundreds from 100 to 900, and the thousands from 1000 to 9000. A large number like 9999 could thus be written with only four signs—combining the signs for 9000, 900, 90, and 9—as opposed to 36 hieroglyphs. Boyer saw the new hieratic numerals as ciphered, mapping one number onto one Egyptian letter for the first time in human history. Greeks adopted the new system, mapping their counting numbers onto two of their alphabets, the Doric and Ionian.[بحاجة لمصدر]
In the oldest hieratic texts the individual numerals were clearly written in a ciphered relationship to the Egyptian alphabet. But during the Old Kingdom a series of standardized writings had developed for sign-groups containing more than one numeral, repeated as Roman numerals practiced. However, repetition of the same numeral for each place-value was not allowed in the hieratic script. As the hieratic writing system developed over time, these sign-groups were further simplified for quick writing; this process continued into Demotic, as well.[بحاجة لمصدر]
Two famous mathematical papyri using hieratic script are the Moscow Mathematical Papyrus and the Rhind Mathematical Papyrus.[بحاجة لمصدر]
Egyptian words for numbers
The following table shows the reconstructed Middle Egyptian forms of the numerals (which are indicated by a preceding asterisk), the transliteration of the hieroglyphs used to write them, and finally the Coptic numerals which descended from them and which give Egyptologists clues as to the vocalism of the original Egyptian numbers. A breve (˘) in some reconstructed forms indicates a short vowel whose quality remains uncertain; the letter 'e' represents a vowel that was originally u or i (exact quality uncertain) but became e by Late Egyptian.[بحاجة لمصدر]
Egyptian transliteration | Reconstructed vocalization | English translation | Coptic (Sahidic dialect) | |
---|---|---|---|---|
per Callender 1975[6] | per Loprieno 1995[7] | |||
wꜥ(w) (masc.) wꜥt (fem.) |
*wíꜥyaw (masc.) *wiꜥī́yat (fem.) |
*wúꜥꜥuw (masc.) | one | ⲟⲩⲁ (oua) (masc.) ⲟⲩⲉⲓ (ouei) (fem.) |
snwj (masc.) sntj (fem.) |
*sínwaj (masc.) *síntaj (fem.) |
*sinúwwaj (masc.) | two | ⲥⲛⲁⲩ (snau) (masc.) ⲥⲛ̄ⲧⲉ (snte) (fem.) |
ḫmtw (masc.) ḫmtt (fem.) |
*ḫámtaw (masc.) *ḫámtat (fem.) |
*ḫámtaw (masc.) | three | ϣⲟⲙⲛ̄ⲧ (šomnt) (masc.) ϣⲟⲙⲧⲉ (šomte) (fem.) |
jfdw (masc.) jfdt (fem.) |
*j˘fdáw (masc.) *j˘fdát (fem.) |
*jifdáw (masc.) | four | ϥⲧⲟⲟⲩ (ftoou) (masc.) ϥⲧⲟ (fto) or ϥⲧⲟⲉ (ftoe) (fem.) |
djw (masc.) djt (fem.) |
*dī́jaw (masc.) *dī́jat (fem.) |
*dī́jaw (masc.) | five | ϯⲟⲩ (tiou) (masc.) ϯ (ti) or ϯⲉ (tie) (fem.) |
sjsw or jsw (?) (masc.) sjst or jst (?) (fem.) |
*j˘ssáw (masc.) *j˘ssát (fem.) |
*sáʾsaw (masc.) | six | ⲥⲟⲟⲩ (soou) (masc.) ⲥⲟ (so) or ⲥⲟⲉ (soe) (fem.) |
sfḫw (masc.) sfḫt (fem.) |
*sáfḫaw (masc.) *sáfḫat (fem.) |
*sáfḫaw (masc.) | seven | ϣⲁϣϥ̄ (šašf) (masc.) ϣⲁϣϥⲉ (šašfe) (fem.) |
ḫmnw (masc.) ḫmnt (fem.) |
*ḫ˘mā́naw (masc.) *ḫ˘mā́nat (fem.) |
*ḫamā́naw (masc.) | eight | ϣⲙⲟⲩⲛ (šmoun) (masc.) ϣⲙⲟⲩⲛⲉ (šmoune) (fem.) |
psḏw (masc.) psḏt (fem.) |
*p˘sī́ḏaw (masc.) *p˘sī́ḏat (fem.) |
*pisī́ḏaw (masc.) | nine | ⲯⲓⲥ (psis) (masc.) ⲯⲓⲧⲉ (psite) (fem.) |
mḏw (masc.) mḏt (fem.) |
*mū́ḏaw (masc.) *mū́ḏat (fem.) |
*mū́ḏaw (masc.) | ten | ⲙⲏⲧ (mēt) (masc.) ⲙⲏⲧⲉ (mēte) (fem.) |
mḏwtj, ḏwtj, or ḏbꜥty (?) (masc.) mḏwtt, ḏwtt, or ḏbꜥtt (?) (fem.) |
*ḏubā́ꜥataj (masc.) | *(mu)ḏawā́taj (masc.) | twenty | ϫⲟⲩⲱⲧ (jouōt) (masc.) ϫⲟⲩⲱⲧⲉ (jouōte) (fem.) |
mꜥbꜣ (masc.) mꜥbꜣt (fem.) |
*máꜥb˘ꜣ (masc.) | *máꜥb˘ꜣ (masc.) | thirty | ⲙⲁⲁⲃ (maab) (masc.) ⲙⲁⲁⲃⲉ (maabe) (fem.) |
ḥmw | *ḥ˘mí (?) | *ḥ˘méw | forty | ϩⲙⲉ (hme) |
dyw | *díjwu | *díjjaw | fifty | ⲧⲁⲉⲓⲟⲩ (taeiou) |
sjsjw, sjsw, or jswjw (?) | *j˘ssáwju | *saʾséw | sixty | ⲥⲉ (se) |
sfḫjw, sfḫw, or sfḫwjw (?) | *safḫáwju | *safḫéw | seventy | ϣϥⲉ (šfe) |
ḫmnjw, ḫmnw, or ḫmnwjw (?) | *ḫamanáwju | *ḫamnéw | eighty | ϩⲙⲉⲛⲉ (hmene) |
psḏjw or psḏwjw (?) | *p˘siḏáwju | *pisḏíjjaw | ninety | ⲡⲥⲧⲁⲓⲟⲩ (pstaiou) |
št | *šúwat | *ší(nju)t | one hundred | ϣⲉ (še) |
štj | *šū́taj | *šinjū́taj | two hundred | ϣⲏⲧ (šēt) |
ḫꜣ | *ḫaꜣ | *ḫaꜣ | one thousand | ϣⲟ (šo) |
ḏbꜥ | *ḏubáꜥ | *ḏ˘báꜥ | ten thousand | ⲧⲃⲁ (tba) |
ḥfn | one hundred thousand | |||
ḥḥ | *ḥaḥ | *ḥaḥ | one million | ϩⲁϩ (hah) "many" |
See also
References
- ^ "Egyptian numerals". Retrieved 2013-09-25.
- ^ "The Story of Numbers" by John McLeish
- ^ Merzbach, Uta C., and Carl B. Boyer. A History of Mathematics. Hoboken, NJ: John Wiley, 2011, p. 10
- ^ George Gheverghese Joseph (2011). The Crest of the Peacock: Non-European Roots of Mathematics (Third ed.). Princeton. p. 86. ISBN 978-0-691-13526-7.
- ^ Cajori, Florian (1993) [1929]. A History of Mathematical Notations. Dover Publications. pp. pp. 229–230. ISBN 0-486-67766-4.
- ^ Callender, John B. (1975) Middle Egyptian, 1975
- ^ Loprieno, Antonio (1995) Ancient Egyptian: A Linguistic Introduction, Cambridge: Cambridge University Press, p. 71, 255
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bibliography
- Allen, James Paul (2000). Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphs. Cambridge: Cambridge University Press. Numerals discussed in §§9.1–9.6.
- Gardiner, Alan Henderson (1957). Egyptian Grammar; Being an Introduction to the Study of Hieroglyphs. 3rd ed. Oxford: Griffith Institute. For numerals, see §§259–266.
- Goedicke, Hans (1988). Old Hieratic Paleography. Baltimore: Halgo, Inc.
- Möller, Georg (1927). Hieratische Paläographie: Die aegyptische Buchschrift in ihrer Entwicklung von der Fünften Dynastie bis zur römischen Kaiserzeit. 3 vols. 2nd ed. Leipzig: J. C. Hinrichs'schen Buchhandlungen. (Reprinted Osnabrück: Otto Zeller Verlag, 1965)