قائمة تكاملات الدوال المثلثية

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

تكاملات مثلثية تحتوي فقط على الجيب (جا)


Antiderivatives containing only cosine

Antiderivatives containing only tangent


Antiderivatives containing only secant

[1]

Antiderivatives containing only cosecant

Antiderivatives containing only cotangent

Antiderivatives containing both sine and cosine

also:
also:
also:
also:
also:

Antiderivatives containing both sine and tangent

Antiderivatives containing both cosine and tangent

Antiderivatives containing both sine and cotangent

Antiderivatives containing both cosine and cotangent


Antiderivatives with symmetric limits

المصادر

  1. ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008