. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
تكاملات مثلثية تحتوي فقط على الجيب (جا)
Antiderivatives containing only cosine
Antiderivatives containing only tangent
Antiderivatives containing only secant
- [1]
Antiderivatives containing only cosecant
Antiderivatives containing only cotangent
Antiderivatives containing both sine and cosine
- also:
- also:
- also:
- also:
- also:
Antiderivatives containing both sine and tangent
Antiderivatives containing both cosine and tangent
Antiderivatives containing both sine and cotangent
Antiderivatives containing both cosine and cotangent
Antiderivatives with symmetric limits
المصادر
- ^ Stewart, James. Calculus: Early Transcendentals, 6th Edition. Thomson: 2008