. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
تكاملات الدوال البسيطة
دوال القيمة المطلقة
∫
|
(
a
x
+
b
)
n
|
d
x
=
(
a
x
+
b
)
n
+
2
a
(
n
+
1
)
|
a
x
+
b
|
+
C
[
n
is odd, and
n
≠
-
1
]
fragments
|
superscript
fragments
(
a
x
b
)
𝑛
|
d
x
superscript
𝑎
𝑥
𝑏
𝑛
2
𝑎
𝑛
1
𝑎
𝑥
𝑏
C
fragments
[
n
is odd, and
n
1
]
{\displaystyle{\displaystyle\int\left|(ax+b)^{n}\right|\,dx={(ax+b)^{n+2}\over
a%
(n+1)\left|ax+b\right|}+C\,\,[\,n{\text{ is odd, and }}n\neq-1\,]}}
∫
|
sin
a
x
|
𝑑
x
=
-
1
a
|
sin
a
x
|
cot
a
x
+
C
𝑎
𝑥
differential-d
𝑥
1
𝑎
𝑎
𝑥
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\sin{ax}\right|\,dx={-1\over a}\left|%
\sin{ax}\right|\cot{ax}+C}}
∫
|
cos
a
x
|
𝑑
x
=
1
a
|
cos
a
x
|
tan
a
x
+
C
𝑎
𝑥
differential-d
𝑥
1
𝑎
𝑎
𝑥
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\cos{ax}\right|\,dx={1\over a}\left|\cos%
{ax}\right|\tan{ax}+C}}
∫
|
tan
a
x
|
𝑑
x
=
tan
(
a
x
)
[
-
ln
|
cos
a
x
|
]
a
|
tan
a
x
|
+
C
𝑎
𝑥
differential-d
𝑥
𝑎
𝑥
delimited-[]
𝑎
𝑥
𝑎
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\tan{ax}\right|\,dx={\tan(ax)[-\ln\left|%
\cos{ax}\right|]\over a\left|\tan{ax}\right|}+C}}
∫
|
csc
a
x
|
𝑑
x
=
-
ln
|
csc
a
x
+
cot
a
x
|
sin
a
x
a
|
sin
a
x
|
+
C
𝑎
𝑥
differential-d
𝑥
𝑎
𝑥
𝑎
𝑥
𝑎
𝑥
𝑎
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\csc{ax}\right|\,dx={-\ln\left|\csc{ax}+%
\cot{ax}\right|\sin{ax}\over a\left|\sin{ax}\right|}+C}}
∫
|
sec
a
x
|
𝑑
x
=
ln
|
sec
a
x
+
tan
a
x
|
cos
a
x
a
|
cos
a
x
|
+
C
𝑎
𝑥
differential-d
𝑥
𝑎
𝑥
𝑎
𝑥
𝑎
𝑥
𝑎
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\sec{ax}\right|\,dx={\ln\left|\sec{ax}+%
\tan{ax}\right|\cos{ax}\over a\left|\cos{ax}\right|}+C}}
∫
|
cot
a
x
|
𝑑
x
=
tan
(
a
x
)
[
ln
|
sin
a
x
|
]
a
|
tan
a
x
|
+
C
𝑎
𝑥
differential-d
𝑥
𝑎
𝑥
delimited-[]
𝑎
𝑥
𝑎
𝑎
𝑥
𝐶
{\displaystyle{\displaystyle\int\left|\cot{ax}\right|\,dx={\tan(ax)[\ln\left|%
\sin{ax}\right|]\over a\left|\tan{ax}\right|}+C}}
اللوغاريتمات
more integrals: List of integrals of logarithmic functions
∫
ln
(
x
)
𝑑
x
=
x
ln
(
x
)
-
x
+
C
𝑥
differential-d
𝑥
𝑥
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\ln(x)\,dx=x\ln(x)-x+C}}
∫
log
b
(
x
)
𝑑
x
=
x
log
b
(
x
)
-
x
log
b
(
e
)
+
C
subscript
𝑏
𝑥
differential-d
𝑥
𝑥
subscript
𝑏
𝑥
𝑥
subscript
𝑏
𝑒
𝐶
{\displaystyle{\displaystyle\int\log_{b}(x)\,dx=x\log_{b}(x)-x\log_{b}(e)+C}}
∫
1
x
𝑑
x
=
ln
|
x
|
+
C
1
𝑥
differential-d
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int{1\over x}\,dx=\ln\left|x\right|+C}}
الدوال الأسية
more integrals: List of integrals of exponential functions
∫
e
x
𝑑
x
=
e
x
+
C
superscript
𝑒
𝑥
differential-d
𝑥
superscript
𝑒
𝑥
𝐶
{\displaystyle{\displaystyle\int e^{x}\,dx=e^{x}+C}}
∫
a
x
𝑑
x
=
a
x
ln
(
a
)
+
C
superscript
𝑎
𝑥
differential-d
𝑥
superscript
𝑎
𝑥
𝑎
𝐶
{\displaystyle{\displaystyle\int a^{x}\,dx={\frac{a^{x}}{\ln(a)}}+C}}
Trigonometric functions
more integrals: List of integrals of trigonometric functions and List of integrals of inverse trigonometric functions
∫
sin
x
d
x
=
-
cos
x
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sin{x}\,dx=-\cos{x}+C}}
∫
cos
x
d
x
=
sin
x
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\cos{x}\,dx=\sin{x}+C}}
∫
tan
x
d
x
=
-
ln
|
cos
x
|
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\tan{x}\,dx=-\ln{\left|\cos{x}\right|}+C}}
∫
cot
x
d
x
=
ln
|
sin
x
|
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\cot{x}\,dx=\ln{\left|\sin{x}\right|}+C}}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
𝑥
𝑑
𝑥
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sec{x}\,dx=\ln{\left|\sec{x}+\tan{x}\right|}+%
C}}
∫
csc
x
d
x
=
-
ln
|
csc
x
+
cot
x
|
+
C
𝑥
𝑑
𝑥
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\csc{x}\,dx=-\ln{\left|\csc{x}+\cot{x}\right|}%
+C}}
∫
sec
2
x
d
x
=
tan
x
+
C
superscript
2
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sec^{2}x\,dx=\tan x+C}}
∫
csc
2
x
d
x
=
-
cot
x
+
C
superscript
2
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\csc^{2}x\,dx=-\cot x+C}}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
𝑥
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sec{x}\,\tan{x}\,dx=\sec{x}+C}}
∫
csc
x
cot
x
d
x
=
-
csc
x
+
C
𝑥
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\csc{x}\,\cot{x}\,dx=-\csc{x}+C}}
∫
sin
2
x
d
x
=
1
2
(
x
-
sin
2
x
2
)
+
C
=
1
2
(
x
-
sin
x
cos
x
)
+
C
superscript
2
𝑥
𝑑
𝑥
1
2
𝑥
2
𝑥
2
𝐶
1
2
𝑥
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sin^{2}x\,dx={\frac{1}{2}}(x-{\frac{\sin 2x}{%
2}})+C={\frac{1}{2}}(x-\sin x\cos x)+C}}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
2
x
2
)
+
C
=
1
2
(
x
+
sin
x
cos
x
)
+
C
superscript
2
𝑥
𝑑
𝑥
1
2
𝑥
2
𝑥
2
𝐶
1
2
𝑥
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\cos^{2}x\,dx={\frac{1}{2}}(x+{\frac{\sin 2x}{%
2}})+C={\frac{1}{2}}(x+\sin x\cos x)+C}}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
C
superscript
3
𝑥
𝑑
𝑥
1
2
𝑥
𝑥
1
2
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sec^{3}x\,dx={\frac{1}{2}}\sec x\tan x+{\frac%
{1}{2}}\ln|\sec x+\tan x|+C}}
(see integral of secant cubed )
∫
sin
n
x
d
x
=
-
sin
n
-
1
x
cos
x
n
+
n
-
1
n
∫
sin
n
-
2
x
d
x
superscript
𝑛
𝑥
𝑑
𝑥
superscript
𝑛
1
𝑥
𝑥
𝑛
𝑛
1
𝑛
superscript
𝑛
2
𝑥
𝑑
𝑥
{\displaystyle{\displaystyle\int\sin^{n}x\,dx=-{\frac{\sin^{n-1}{x}\cos{x}}{n}%
}+{\frac{n-1}{n}}\int\sin^{n-2}{x}\,dx}}
∫
cos
n
x
d
x
=
cos
n
-
1
x
sin
x
n
+
n
-
1
n
∫
cos
n
-
2
x
d
x
superscript
𝑛
𝑥
𝑑
𝑥
superscript
𝑛
1
𝑥
𝑥
𝑛
𝑛
1
𝑛
superscript
𝑛
2
𝑥
𝑑
𝑥
{\displaystyle{\displaystyle\int\cos^{n}x\,dx={\frac{\cos^{n-1}{x}\sin{x}}{n}}%
+{\frac{n-1}{n}}\int\cos^{n-2}{x}\,dx}}
∫
arctan
x
d
x
=
x
arctan
x
-
1
2
ln
|
1
+
x
2
|
+
C
𝑥
𝑑
𝑥
𝑥
𝑥
1
2
1
superscript
𝑥
2
𝐶
{\displaystyle{\displaystyle\int\arctan{x}\,dx=x\,\arctan{x}-{\frac{1}{2}}\ln{%
\left|1+x^{2}\right|}+C}}
Hyperbolic functions
more integrals: List of integrals of hyperbolic functions
∫
sinh
x
d
x
=
cosh
x
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\sinh x\,dx=\cosh x+C}}
∫
cosh
x
d
x
=
sinh
x
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\cosh x\,dx=\sinh x+C}}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
C
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\tanh x\,dx=\ln|\cosh x|+C}}
∫
csch
x
𝑑
x
=
ln
|
tanh
x
2
|
+
C
csch
𝑥
differential-d
𝑥
𝑥
2
𝐶
{\displaystyle{\displaystyle\int{\mbox{csch}}\,x\,dx=\ln\left|\tanh{x\over 2}%
\right|+C}}
∫
sech
x
𝑑
x
=
arctan
(
sinh
x
)
+
C
sech
𝑥
differential-d
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int{\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C}}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
hyperbolic-cotangent
𝑥
𝑑
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int\coth x\,dx=\ln|\sinh x|+C}}
∫
sech
2
x
𝑑
x
=
tanh
x
+
C
superscript
sech
2
𝑥
differential-d
𝑥
𝑥
𝐶
{\displaystyle{\displaystyle\int{\mbox{sech}}^{2}x\,dx=\tanh x+C}}
Inverse hyperbolic functions
∫
arsinh
x
d
x
=
x
arsinh
x
-
x
2
+
1
+
C
arsinh
𝑥
𝑑
𝑥
𝑥
arsinh
𝑥
superscript
𝑥
2
1
𝐶
{\displaystyle{\displaystyle\int\operatorname{arsinh}\,x\,dx=x\,\operatorname{%
arsinh}\,x-{\sqrt{x^{2}+1}}+C}}
∫
arcosh
x
d
x
=
x
arcosh
x
-
x
2
-
1
+
C
arcosh
𝑥
𝑑
𝑥
𝑥
arcosh
𝑥
superscript
𝑥
2
1
𝐶
{\displaystyle{\displaystyle\int\operatorname{arcosh}\,x\,dx=x\,\operatorname{%
arcosh}\,x-{\sqrt{x^{2}-1}}+C}}
∫
artanh
x
d
x
=
x
artanh
x
+
1
2
ln
(
1
-
x
2
)
+
C
artanh
𝑥
𝑑
𝑥
𝑥
artanh
𝑥
1
2
1
superscript
𝑥
2
𝐶
{\displaystyle{\displaystyle\int\operatorname{artanh}\,x\,dx=x\,\operatorname{%
artanh}\,x+{\frac{1}{2}}\ln{(1-x^{2})}+C}}
∫
arcsch
x
d
x
=
x
arcsch
x
+
ln
[
x
(
1
+
1
x
2
+
1
)
]
+
C
arcsch
𝑥
𝑑
𝑥
𝑥
arcsch
𝑥
𝑥
1
1
superscript
𝑥
2
1
𝐶
{\displaystyle{\displaystyle\int\operatorname{arcsch}\,x\,dx=x\,\operatorname{%
arcsch}\,x+\ln{\left[x\left({\sqrt{1+{\frac{1}{x^{2}}}}}+1\right)\right]}+C}}
∫
arsech
x
d
x
=
x
arsech
x
-
arctan
(
x
x
-
1
1
-
x
1
+
x
)
+
C
arsech
𝑥
𝑑
𝑥
𝑥
arsech
𝑥
𝑥
𝑥
1
1
𝑥
1
𝑥
𝐶
{\displaystyle{\displaystyle\int\operatorname{arsech}\,x\,dx=x\,\operatorname{%
arsech}\,x-\arctan{\left({\frac{x}{x-1}}{\sqrt{\frac{1-x}{1+x}}}\right)}+C}}
∫
arcoth
x
d
x
=
x
arcoth
x
+
1
2
ln
(
x
2
-
1
)
+
C
arcoth
𝑥
𝑑
𝑥
𝑥
arcoth
𝑥
1
2
superscript
𝑥
2
1
𝐶
{\displaystyle{\displaystyle\int\operatorname{arcoth}\,x\,dx=x\,\operatorname{%
arcoth}\,x+{\frac{1}{2}}\ln{(x^{2}-1)}+C}}
دوال خاصة
∫
Ci
(
x
)
𝑑
x
=
x
Ci
(
x
)
-
sin
x
Ci
𝑥
differential-d
𝑥
𝑥
Ci
𝑥
𝑥
{\displaystyle{\displaystyle\int\operatorname{Ci}(x)dx=x\,\operatorname{Ci}(x)%
-\sin x}}
∫
Si
(
x
)
𝑑
x
=
x
Si
(
x
)
+
cos
x
Si
𝑥
differential-d
𝑥
𝑥
Si
𝑥
𝑥
{\displaystyle{\displaystyle\int\operatorname{Si}(x)dx=x\,\operatorname{Si}(x)%
+\cos x}}
∫
Ei
(
x
)
𝑑
x
=
x
Ei
(
x
)
-
e
x
Ei
𝑥
differential-d
𝑥
𝑥
Ei
𝑥
superscript
𝑒
𝑥
{\displaystyle{\displaystyle\int\operatorname{Ei}(x)dx=x\,\operatorname{Ei}(x)%
-e^{x}}}
∫
li
(
x
)
𝑑
x
=
x
li
(
x
)
-
Ei
(
2
ln
x
)
li
𝑥
differential-d
𝑥
𝑥
li
𝑥
Ei
2
𝑥
{\displaystyle{\displaystyle\int\operatorname{li}(x)dx=x\,\operatorname{li}(x)%
-\operatorname{Ei}(2\ln x)}}
∫
li
(
x
)
x
𝑑
x
=
ln
x
li
(
x
)
-
x
li
𝑥
𝑥
differential-d
𝑥
𝑥
li
𝑥
𝑥
{\displaystyle{\displaystyle\int{\frac{\operatorname{li}(x)}{x}}\,dx=\ln x\,%
\operatorname{li}(x)-x}}
∫
erf
(
x
)
𝑑
x
=
e
-
x
2
π
+
x
erf
(
x
)
erf
𝑥
differential-d
𝑥
superscript
𝑒
superscript
𝑥
2
𝜋
𝑥
erf
𝑥
{\displaystyle{\displaystyle\int\operatorname{erf}(x)\,dx={\frac{e^{-x^{2}}}{%
\sqrt{\pi}}}+x\,{\text{erf}}(x)}}
Definite integrals lacking closed-form antiderivatives
There are some functions whose antiderivatives cannot be expressed in closed form . However, the values of the definite integrals of some of these functions over some common intervals can be calculated. A few useful integrals are given below.
∫
0
∞
x
e
-
x
𝑑
x
=
1
2
π
superscript
subscript
0
𝑥
superscript
𝑒
𝑥
differential-d
𝑥
1
2
𝜋
{\displaystyle{\displaystyle\int_{0}^{\infty}{{\sqrt{x}}\,e^{-x}\,dx}={\frac{1%
}{2}}{\sqrt{\pi}}}}
(see also Gamma function )
∫
0
∞
e
-
x
2
𝑑
x
=
1
2
π
superscript
subscript
0
superscript
𝑒
superscript
𝑥
2
differential-d
𝑥
1
2
𝜋
{\displaystyle{\displaystyle\int_{0}^{\infty}{e^{-x^{2}}\,dx}={\frac{1}{2}}{%
\sqrt{\pi}}}}
(the Gaussian integral )
∫
0
∞
x
e
x
-
1
𝑑
x
=
π
2
6
superscript
subscript
0
𝑥
superscript
𝑒
𝑥
1
differential-d
𝑥
superscript
𝜋
2
6
{\displaystyle{\displaystyle\int_{0}^{\infty}{{\frac{x}{e^{x}-1}}\,dx}={\frac{%
\pi^{2}}{6}}}}
(see also Bernoulli number )
∫
0
∞
x
3
e
x
-
1
𝑑
x
=
π
4
15
superscript
subscript
0
superscript
𝑥
3
superscript
𝑒
𝑥
1
differential-d
𝑥
superscript
𝜋
4
15
{\displaystyle{\displaystyle\int_{0}^{\infty}{{\frac{x^{3}}{e^{x}-1}}\,dx}={%
\frac{\pi^{4}}{15}}}}
∫
0
∞
sin
(
x
)
x
𝑑
x
=
π
2
superscript
subscript
0
𝑥
𝑥
differential-d
𝑥
𝜋
2
{\displaystyle{\displaystyle\int_{0}^{\infty}{\frac{\sin(x)}{x}}\,dx={\frac{%
\pi}{2}}}}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
1
⋅
3
⋅
5
⋅
⋯
⋅
(
n
-
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
n
π
2
superscript
subscript
0
𝜋
2
superscript
𝑛
𝑥
𝑑
𝑥
superscript
subscript
0
𝜋
2
superscript
𝑛
𝑥
𝑑
𝑥
⋅
1
3
5
⋯
𝑛
1
⋅
2
4
6
⋯
𝑛
𝜋
2
{\displaystyle{\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{n}{x}\,dx=\int_{0}^{%
\frac{\pi}{2}}\cos^{n}{x}\,dx={\frac{1\cdot 3\cdot 5\cdot\cdots\cdot(n-1)}{2%
\cdot 4\cdot 6\cdot\cdots\cdot n}}{\frac{\pi}{2}}}}
(if n is an even integer and
n
≥
2
𝑛
2
{\displaystyle{\displaystyle\scriptstyle{n\geq 2}}}
)
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
2
⋅
4
⋅
6
⋅
⋯
⋅
(
n
-
1
)
3
⋅
5
⋅
7
⋅
⋯
⋅
n
superscript
subscript
0
𝜋
2
superscript
𝑛
𝑥
𝑑
𝑥
superscript
subscript
0
𝜋
2
superscript
𝑛
𝑥
𝑑
𝑥
⋅
2
4
6
⋯
𝑛
1
⋅
3
5
7
⋯
𝑛
{\displaystyle{\displaystyle\int_{0}^{\frac{\pi}{2}}\sin^{n}{x}\,dx=\int_{0}^{%
\frac{\pi}{2}}\cos^{n}{x}\,dx={\frac{2\cdot 4\cdot 6\cdot\cdots\cdot(n-1)}{3%
\cdot 5\cdot 7\cdot\cdots\cdot n}}}}
(if
n
𝑛
{\displaystyle{\displaystyle\scriptstyle{n}}}
is an odd integer and
n
≥
3
𝑛
3
{\displaystyle{\displaystyle\scriptstyle{n\geq 3}}}
)
∫
0
∞
sin
2
x
x
2
𝑑
x
=
π
2
superscript
subscript
0
superscript
2
𝑥
superscript
𝑥
2
differential-d
𝑥
𝜋
2
{\displaystyle{\displaystyle\int_{0}^{\infty}{\frac{\sin^{2}{x}}{x^{2}}}\,dx={%
\frac{\pi}{2}}}}
∫
0
∞
x
z
-
1
e
-
x
𝑑
x
=
Γ
(
z
)
superscript
subscript
0
superscript
𝑥
𝑧
1
superscript
𝑒
𝑥
differential-d
𝑥
Γ
𝑧
{\displaystyle{\displaystyle\int_{0}^{\infty}x^{z-1}\,e^{-x}\,dx=\Gamma(z)}}
(where
Γ
(
z
)
Γ
𝑧
{\displaystyle{\displaystyle\Gamma(z)}}
is the Gamma function )
∫
-
∞
∞
e
-
(
a
x
2
+
b
x
+
c
)
𝑑
x
=
π
a
exp
[
b
2
-
4
a
c
4
a
]
superscript
subscript
superscript
𝑒
𝑎
superscript
𝑥
2
𝑏
𝑥
𝑐
differential-d
𝑥
𝜋
𝑎
superscript
𝑏
2
4
𝑎
𝑐
4
𝑎
{\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{-(ax^{2}+bx+c)}\,dx={%
\sqrt{\frac{\pi}{a}}}\exp\left[{\frac{b^{2}-4ac}{4a}}\right]}}
(where
exp
[
u
]
𝑢
{\displaystyle{\displaystyle\exp[u]}}
is the exponential function
e
u
superscript
𝑒
𝑢
{\displaystyle{\displaystyle e^{u}}}
, and
a
>
0
𝑎
0
{\displaystyle{\displaystyle a>0}}
)
∫
0
2
π
e
x
cos
θ
𝑑
θ
=
2
π
I
0
(
x
)
superscript
subscript
0
2
𝜋
superscript
𝑒
𝑥
𝜃
differential-d
𝜃
2
𝜋
subscript
𝐼
0
𝑥
{\displaystyle{\displaystyle\int_{0}^{2\pi}e^{x\cos\theta}d\theta=2\pi I_{0}(x%
)}}
(where
I
0
(
x
)
subscript
𝐼
0
𝑥
{\displaystyle{\displaystyle I_{0}(x)}}
is the modified Bessel function of the first kind)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
𝑑
θ
=
2
π
I
0
(
x
2
+
y
2
)
superscript
subscript
0
2
𝜋
superscript
𝑒
𝑥
𝜃
𝑦
𝜃
differential-d
𝜃
2
𝜋
subscript
𝐼
0
superscript
𝑥
2
superscript
𝑦
2
{\displaystyle{\displaystyle\int_{0}^{2\pi}e^{x\cos\theta+y\sin\theta}d\theta=%
2\pi I_{0}\left({\sqrt{x^{2}+y^{2}}}\right)}}
∫
-
∞
∞
(
1
+
x
2
/
ν
)
-
(
ν
+
1
)
/
2
𝑑
x
=
ν
π
Γ
(
ν
/
2
)
Γ
(
(
ν
+
1
)
/
2
)
)
superscript
subscript
superscript
1
superscript
𝑥
2
𝜈
𝜈
1
2
differential-d
𝑥
𝜈
𝜋
Γ
𝜈
2
fragments
Γ
fragments
(
fragments
(
ν
1
)
2
)
)
{\displaystyle{\displaystyle\int_{-\infty}^{\infty}{(1+x^{2}/\nu)^{-(\nu+1)/2}%
dx}={\frac{{\sqrt{\nu\pi}}\ \Gamma(\nu/2)}{\Gamma((\nu+1)/2))}}\,}}
,
ν
>
0
𝜈
0
{\displaystyle{\displaystyle\nu>0\,}}
, this is related to the probability density function of the Student's t-distribution )
The method of exhaustion provides a formula for the general case when no antiderivative exists:
∫
a
b
f
(
x
)
𝑑
x
=
(
b
-
a
)
∑
n
=
1
∞
∑
m
=
1
2
n
-
1
(
-
1
)
m
+
1
2
-
n
f
(
a
+
m
(
b
-
a
)
2
-
n
)
.
superscript
subscript
𝑎
𝑏
𝑓
𝑥
differential-d
𝑥
𝑏
𝑎
superscript
subscript
𝑛
1
superscript
subscript
𝑚
1
superscript
2
𝑛
1
superscript
1
𝑚
1
superscript
2
𝑛
𝑓
𝑎
𝑚
𝑏
𝑎
superscript
2
𝑛
{\displaystyle{\displaystyle\int_{a}^{b}{f(x)\,dx}=(b-a)\sum\limits_{n=1}^{%
\infty}{\sum\limits_{m=1}^{2^{n}-1}{\left({-1}\right)^{m+1}}}2^{-n}f(a+m\left(%
{b-a}\right)2^{-n}).}}
∫
0
1
[
ln
(
1
/
x
)
]
p
𝑑
x
=
p
!
superscript
subscript
0
1
superscript
delimited-[]
1
𝑥
𝑝
differential-d
𝑥
𝑝
{\displaystyle{\displaystyle\int_{0}^{1}[\ln(1/x)]^{p}\,dx=p!}}
∫
0
1
x
-
x
𝑑
x
=
∑
n
=
1
∞
n
-
n
(
=
1.29128599706266
…
)
∫
0
1
x
x
𝑑
x
=
∑
n
=
1
∞
-
(
-
1
)
n
n
-
n
(
=
0.783430510712
…
)
superscript
subscript
0
1
superscript
𝑥
𝑥
differential-d
𝑥
absent
superscript
subscript
𝑛
1
superscript
𝑛
𝑛
missing-subexpression
absent
1.29128599706266
…
superscript
subscript
0
1
superscript
𝑥
𝑥
differential-d
𝑥
absent
superscript
subscript
𝑛
1
superscript
1
𝑛
superscript
𝑛
𝑛
missing-subexpression
absent
0.783430510712
…
{\displaystyle{\displaystyle{\begin{aligned} \displaystyle\int_{0}^{1}x^{-x}\,%
dx&\displaystyle=\sum_{n=1}^{\infty}n^{-n}&&\displaystyle(=1.29128599706266%
\dots)\\
\displaystyle\int_{0}^{1}x^{x}\,dx&\displaystyle=\sum_{n=1}^{\infty}-(-1)^{n}n%
^{-n}&&\displaystyle(=0.783430510712\dots)\end{aligned}}}}
منسوبة إلى يوهان برنولي .
المصادر
Besavilla: Engineering Review Center, Engineering Mathematics (Formulas) , Mini Booklet
I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products , seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Errata. (Several previous editions as well.)
Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae , 31st edition. Chapman & Hall/CRC Press , 2002. ISBN 1-58488-291-3. (Many earlier editions as well.)
انظر أيضاً
وصلات خارجية
جداول التكاملات
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
تاريخية
Meyer Hirsch, Integraltafeln, oder, Sammlung von Integralformeln (Duncker und Humblot, Berlin, 1810)
Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln ]
David de Bierens de Haan, Nouvelles Tables d'Intégrales définies (Engels, Leiden, 1862)
Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899)