. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
تكاملات الدوال البسيطة
دوال القيمة المطلقة
∫
|
(
a
x
+
b
)
n
|
d
x
=
(
a
x
+
b
)
n
+
2
a
(
n
+
1
)
|
a
x
+
b
|
+
C
[
n
is odd, and
n
≠
−
1
]
{\displaystyle \int \left|(ax+b)^{n}\right|\,dx={(ax+b)^{n+2} \over a(n+1)\left|ax+b\right|}+C\,\,[\,n{\text{ is odd, and }}n\neq -1\,]}
∫
|
sin
a
x
|
d
x
=
−
1
a
|
sin
a
x
|
cot
a
x
+
C
{\displaystyle \int \left|\sin {ax}\right|\,dx={-1 \over a}\left|\sin {ax}\right|\cot {ax}+C}
∫
|
cos
a
x
|
d
x
=
1
a
|
cos
a
x
|
tan
a
x
+
C
{\displaystyle \int \left|\cos {ax}\right|\,dx={1 \over a}\left|\cos {ax}\right|\tan {ax}+C}
∫
|
tan
a
x
|
d
x
=
tan
(
a
x
)
[
−
ln
|
cos
a
x
|
]
a
|
tan
a
x
|
+
C
{\displaystyle \int \left|\tan {ax}\right|\,dx={\tan(ax)[-\ln \left|\cos {ax}\right|] \over a\left|\tan {ax}\right|}+C}
∫
|
csc
a
x
|
d
x
=
−
ln
|
csc
a
x
+
cot
a
x
|
sin
a
x
a
|
sin
a
x
|
+
C
{\displaystyle \int \left|\csc {ax}\right|\,dx={-\ln \left|\csc {ax}+\cot {ax}\right|\sin {ax} \over a\left|\sin {ax}\right|}+C}
∫
|
sec
a
x
|
d
x
=
ln
|
sec
a
x
+
tan
a
x
|
cos
a
x
a
|
cos
a
x
|
+
C
{\displaystyle \int \left|\sec {ax}\right|\,dx={\ln \left|\sec {ax}+\tan {ax}\right|\cos {ax} \over a\left|\cos {ax}\right|}+C}
∫
|
cot
a
x
|
d
x
=
tan
(
a
x
)
[
ln
|
sin
a
x
|
]
a
|
tan
a
x
|
+
C
{\displaystyle \int \left|\cot {ax}\right|\,dx={\tan(ax)[\ln \left|\sin {ax}\right|] \over a\left|\tan {ax}\right|}+C}
اللوغاريتمات
more integrals: List of integrals of logarithmic functions
∫
ln
(
x
)
d
x
=
x
ln
(
x
)
−
x
+
C
{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C}
∫
log
b
(
x
)
d
x
=
x
log
b
(
x
)
−
x
log
b
(
e
)
+
C
{\displaystyle \int \log _{b}(x)\,dx=x\log _{b}(x)-x\log _{b}(e)+C}
∫
1
x
d
x
=
ln
|
x
|
+
C
{\displaystyle \int {1 \over x}\,dx=\ln \left|x\right|+C}
الدوال الأسية
more integrals: List of integrals of exponential functions
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int e^{x}\,dx=e^{x}+C}
∫
a
x
d
x
=
a
x
ln
(
a
)
+
C
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln(a)}}+C}
Trigonometric functions
more integrals: List of integrals of trigonometric functions and List of integrals of inverse trigonometric functions
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫
tan
x
d
x
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan {x}\,dx=-\ln {\left|\cos {x}\right|}+C}
∫
cot
x
d
x
=
ln
|
sin
x
|
+
C
{\displaystyle \int \cot {x}\,dx=\ln {\left|\sin {x}\right|}+C}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C}
∫
csc
x
d
x
=
−
ln
|
csc
x
+
cot
x
|
+
C
{\displaystyle \int \csc {x}\,dx=-\ln {\left|\csc {x}+\cot {x}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+C}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
2
x
2
)
+
C
=
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-{\frac {\sin 2x}{2}})+C={\frac {1}{2}}(x-\sin x\cos x)+C}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
2
x
2
)
+
C
=
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+{\frac {\sin 2x}{2}})+C={\frac {1}{2}}(x+\sin x\cos x)+C}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C}
(see integral of secant cubed )
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
{\displaystyle \int \arctan {x}\,dx=x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
Hyperbolic functions
more integrals: List of integrals of hyperbolic functions
∫
sinh
x
d
x
=
cosh
x
+
C
{\displaystyle \int \sinh x\,dx=\cosh x+C}
∫
cosh
x
d
x
=
sinh
x
+
C
{\displaystyle \int \cosh x\,dx=\sinh x+C}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
C
{\displaystyle \int \tanh x\,dx=\ln |\cosh x|+C}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
C
{\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+C}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int {\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C}
∫
sech
2
x
d
x
=
tanh
x
+
C
{\displaystyle \int {\mbox{sech}}^{2}x\,dx=\tanh x+C}
Inverse hyperbolic functions
∫
arsinh
x
d
x
=
x
arsinh
x
−
x
2
+
1
+
C
{\displaystyle \int \operatorname {arsinh} \,x\,dx=x\,\operatorname {arsinh} \,x-{\sqrt {x^{2}+1}}+C}
∫
arcosh
x
d
x
=
x
arcosh
x
−
x
2
−
1
+
C
{\displaystyle \int \operatorname {arcosh} \,x\,dx=x\,\operatorname {arcosh} \,x-{\sqrt {x^{2}-1}}+C}
∫
artanh
x
d
x
=
x
artanh
x
+
1
2
ln
(
1
−
x
2
)
+
C
{\displaystyle \int \operatorname {artanh} \,x\,dx=x\,\operatorname {artanh} \,x+{\frac {1}{2}}\ln {(1-x^{2})}+C}
∫
arcsch
x
d
x
=
x
arcsch
x
+
ln
[
x
(
1
+
1
x
2
+
1
)
]
+
C
{\displaystyle \int \operatorname {arcsch} \,x\,dx=x\,\operatorname {arcsch} \,x+\ln {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+C}
∫
arsech
x
d
x
=
x
arsech
x
−
arctan
(
x
x
−
1
1
−
x
1
+
x
)
+
C
{\displaystyle \int \operatorname {arsech} \,x\,dx=x\,\operatorname {arsech} \,x-\arctan {\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+C}
∫
arcoth
x
d
x
=
x
arcoth
x
+
1
2
ln
(
x
2
−
1
)
+
C
{\displaystyle \int \operatorname {arcoth} \,x\,dx=x\,\operatorname {arcoth} \,x+{\frac {1}{2}}\ln {(x^{2}-1)}+C}
دوال خاصة
∫
Ci
(
x
)
d
x
=
x
Ci
(
x
)
−
sin
x
{\displaystyle \int \operatorname {Ci} (x)dx=x\,\operatorname {Ci} (x)-\sin x}
∫
Si
(
x
)
d
x
=
x
Si
(
x
)
+
cos
x
{\displaystyle \int \operatorname {Si} (x)dx=x\,\operatorname {Si} (x)+\cos x}
∫
Ei
(
x
)
d
x
=
x
Ei
(
x
)
−
e
x
{\displaystyle \int \operatorname {Ei} (x)dx=x\,\operatorname {Ei} (x)-e^{x}}
∫
li
(
x
)
d
x
=
x
li
(
x
)
−
Ei
(
2
ln
x
)
{\displaystyle \int \operatorname {li} (x)dx=x\,\operatorname {li} (x)-\operatorname {Ei} (2\ln x)}
∫
li
(
x
)
x
d
x
=
ln
x
li
(
x
)
−
x
{\displaystyle \int {\frac {\operatorname {li} (x)}{x}}\,dx=\ln x\,\operatorname {li} (x)-x}
∫
erf
(
x
)
d
x
=
e
−
x
2
π
+
x
erf
(
x
)
{\displaystyle \int \operatorname {erf} (x)\,dx={\frac {e^{-x^{2}}}{\sqrt {\pi }}}+x\,{\text{erf}}(x)}
Definite integrals lacking closed-form antiderivatives
There are some functions whose antiderivatives cannot be expressed in closed form . However, the values of the definite integrals of some of these functions over some common intervals can be calculated. A few useful integrals are given below.
∫
0
∞
x
e
−
x
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{{\sqrt {x}}\,e^{-x}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
(see also Gamma function )
∫
0
∞
e
−
x
2
d
x
=
1
2
π
{\displaystyle \int _{0}^{\infty }{e^{-x^{2}}\,dx}={\frac {1}{2}}{\sqrt {\pi }}}
(the Gaussian integral )
∫
0
∞
x
e
x
−
1
d
x
=
π
2
6
{\displaystyle \int _{0}^{\infty }{{\frac {x}{e^{x}-1}}\,dx}={\frac {\pi ^{2}}{6}}}
(see also Bernoulli number )
∫
0
∞
x
3
e
x
−
1
d
x
=
π
4
15
{\displaystyle \int _{0}^{\infty }{{\frac {x^{3}}{e^{x}-1}}\,dx}={\frac {\pi ^{4}}{15}}}
∫
0
∞
sin
(
x
)
x
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin(x)}{x}}\,dx={\frac {\pi }{2}}}
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
1
⋅
3
⋅
5
⋅
⋯
⋅
(
n
−
1
)
2
⋅
4
⋅
6
⋅
⋯
⋅
n
π
2
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {1\cdot 3\cdot 5\cdot \cdots \cdot (n-1)}{2\cdot 4\cdot 6\cdot \cdots \cdot n}}{\frac {\pi }{2}}}
(if n is an even integer and
n
≥
2
{\displaystyle \scriptstyle {n\geq 2}}
)
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
2
⋅
4
⋅
6
⋅
⋯
⋅
(
n
−
1
)
3
⋅
5
⋅
7
⋅
⋯
⋅
n
{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}{x}\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}{x}\,dx={\frac {2\cdot 4\cdot 6\cdot \cdots \cdot (n-1)}{3\cdot 5\cdot 7\cdot \cdots \cdot n}}}
(if
n
{\displaystyle \scriptstyle {n}}
is an odd integer and
n
≥
3
{\displaystyle \scriptstyle {n\geq 3}}
)
∫
0
∞
sin
2
x
x
2
d
x
=
π
2
{\displaystyle \int _{0}^{\infty }{\frac {\sin ^{2}{x}}{x^{2}}}\,dx={\frac {\pi }{2}}}
∫
0
∞
x
z
−
1
e
−
x
d
x
=
Γ
(
z
)
{\displaystyle \int _{0}^{\infty }x^{z-1}\,e^{-x}\,dx=\Gamma (z)}
(where
Γ
(
z
)
{\displaystyle \Gamma (z)}
is the Gamma function )
∫
−
∞
∞
e
−
(
a
x
2
+
b
x
+
c
)
d
x
=
π
a
exp
[
b
2
−
4
a
c
4
a
]
{\displaystyle \int _{-\infty }^{\infty }e^{-(ax^{2}+bx+c)}\,dx={\sqrt {\frac {\pi }{a}}}\exp \left[{\frac {b^{2}-4ac}{4a}}\right]}
(where
exp
[
u
]
{\displaystyle \exp[u]}
is the exponential function
e
u
{\displaystyle e^{u}}
, and
a
>
0
{\displaystyle a>0}
)
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(where
I
0
(
x
)
{\displaystyle I_{0}(x)}
is the modified Bessel function of the first kind)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
(
x
2
+
y
2
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}
∫
−
∞
∞
(
1
+
x
2
/
ν
)
−
(
ν
+
1
)
/
2
d
x
=
ν
π
Γ
(
ν
/
2
)
Γ
(
(
ν
+
1
)
/
2
)
)
{\displaystyle \int _{-\infty }^{\infty }{(1+x^{2}/\nu )^{-(\nu +1)/2}dx}={\frac {{\sqrt {\nu \pi }}\ \Gamma (\nu /2)}{\Gamma ((\nu +1)/2))}}\,}
,
ν
>
0
{\displaystyle \nu >0\,}
, this is related to the probability density function of the Student's t-distribution )
The method of exhaustion provides a formula for the general case when no antiderivative exists:
∫
a
b
f
(
x
)
d
x
=
(
b
−
a
)
∑
n
=
1
∞
∑
m
=
1
2
n
−
1
(
−
1
)
m
+
1
2
−
n
f
(
a
+
m
(
b
−
a
)
2
−
n
)
.
{\displaystyle \int _{a}^{b}{f(x)\,dx}=(b-a)\sum \limits _{n=1}^{\infty }{\sum \limits _{m=1}^{2^{n}-1}{\left({-1}\right)^{m+1}}}2^{-n}f(a+m\left({b-a}\right)2^{-n}).}
∫
0
1
[
ln
(
1
/
x
)
]
p
d
x
=
p
!
{\displaystyle \int _{0}^{1}[\ln(1/x)]^{p}\,dx=p!}
∫
0
1
x
−
x
d
x
=
∑
n
=
1
∞
n
−
n
(
=
1.29128599706266
…
)
∫
0
1
x
x
d
x
=
∑
n
=
1
∞
−
(
−
1
)
n
n
−
n
(
=
0.783430510712
…
)
{\displaystyle {\begin{aligned}\int _{0}^{1}x^{-x}\,dx&=\sum _{n=1}^{\infty }n^{-n}&&(=1.29128599706266\dots )\\\int _{0}^{1}x^{x}\,dx&=\sum _{n=1}^{\infty }-(-1)^{n}n^{-n}&&(=0.783430510712\dots )\end{aligned}}}
منسوبة إلى يوهان برنولي .
المصادر
Besavilla: Engineering Review Center, Engineering Mathematics (Formulas) , Mini Booklet
I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжик); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products , seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Errata. (Several previous editions as well.)
Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae , 31st edition. Chapman & Hall/CRC Press , 2002. ISBN 1-58488-291-3. (Many earlier editions as well.)
انظر أيضاً
وصلات خارجية
جداول التكاملات
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
تاريخية
Meyer Hirsch, Integraltafeln, oder, Sammlung von Integralformeln (Duncker und Humblot, Berlin, 1810)
Meyer Hirsch, Integral Tables, Or, A Collection of Integral Formulae (Baynes and son, London, 1823) [English translation of Integraltafeln ]
David de Bierens de Haan, Nouvelles Tables d'Intégrales définies (Engels, Leiden, 1862)
Benjamin O. Pierce A short table of integrals - revised edition (Ginn & co., Boston, 1899)