In green, confocal parabolae opening upwards,
2
y
=
x
2
σ
2
-
σ
2
2
𝑦
superscript
𝑥
2
superscript
𝜎
2
superscript
𝜎
2
{\displaystyle{\displaystyle 2y={\frac{x^{2}}{\sigma^{2}}}-\sigma^{2}}}
In red, confocal parabolae opening downwards,
2
y
=
-
x
2
τ
2
+
τ
2
2
𝑦
superscript
𝑥
2
superscript
𝜏
2
superscript
𝜏
2
{\displaystyle{\displaystyle 2y=-{\frac{x^{2}}{\tau^{2}}}+\tau^{2}}}
Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas . A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas.
Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Two-dimensional parabolic coordinates
Two-dimensional parabolic coordinates
(
σ
,
τ
)
𝜎
𝜏
{\displaystyle{\displaystyle(\sigma,\tau)}}
are defined by the equations, in terms of Cartesian coordinates:
x
=
σ
τ
𝑥
𝜎
𝜏
{\displaystyle{\displaystyle x=\sigma\tau}}
y
=
1
2
(
τ
2
-
σ
2
)
𝑦
1
2
superscript
𝜏
2
superscript
𝜎
2
{\displaystyle{\displaystyle y={\frac{1}{2}}\left(\tau^{2}-\sigma^{2}\right)}}
The curves of constant
σ
𝜎
{\displaystyle{\displaystyle\sigma}}
form confocal parabolae
2
y
=
x
2
σ
2
-
σ
2
2
𝑦
superscript
𝑥
2
superscript
𝜎
2
superscript
𝜎
2
{\displaystyle{\displaystyle 2y={\frac{x^{2}}{\sigma^{2}}}-\sigma^{2}}}
that open upwards (i.e., towards
+
y
𝑦
{\displaystyle{\displaystyle+y}}
), whereas the curves of constant
τ
𝜏
{\displaystyle{\displaystyle\tau}}
form confocal parabolae
2
y
=
-
x
2
τ
2
+
τ
2
2
𝑦
superscript
𝑥
2
superscript
𝜏
2
superscript
𝜏
2
{\displaystyle{\displaystyle 2y=-{\frac{x^{2}}{\tau^{2}}}+\tau^{2}}}
that open downwards (i.e., towards
-
y
𝑦
{\displaystyle{\displaystyle-y}}
). The foci of all these parabolae are located at the origin.
The Cartesian coordinates
x
𝑥
{\displaystyle{\displaystyle x}}
and
y
𝑦
{\displaystyle{\displaystyle y}}
can be converted to parabolic coordinates by:
σ
=
sign
(
x
)
x
2
+
y
2
-
y
𝜎
sign
𝑥
superscript
𝑥
2
superscript
𝑦
2
𝑦
{\displaystyle{\displaystyle\sigma=\operatorname{sign}(x){\sqrt{{\sqrt{x^{2}+y%
^{2}}}-y}}}}
τ
=
x
2
+
y
2
+
y
𝜏
superscript
𝑥
2
superscript
𝑦
2
𝑦
{\displaystyle{\displaystyle\tau={\sqrt{{\sqrt{x^{2}+y^{2}}}+y}}}}
Two-dimensional scale factors
The scale factors for the parabolic coordinates
(
σ
,
τ
)
𝜎
𝜏
{\displaystyle{\displaystyle(\sigma,\tau)}}
are equal
h
σ
=
h
τ
=
σ
2
+
τ
2
subscript
ℎ
𝜎
subscript
ℎ
𝜏
superscript
𝜎
2
superscript
𝜏
2
{\displaystyle{\displaystyle h_{\sigma}=h_{\tau}={\sqrt{\sigma^{2}+\tau^{2}}}}}
Hence, the infinitesimal element of area is
d
A
=
(
σ
2
+
τ
2
)
d
σ
d
τ
𝑑
𝐴
superscript
𝜎
2
superscript
𝜏
2
𝑑
𝜎
𝑑
𝜏
{\displaystyle{\displaystyle dA=\left(\sigma^{2}+\tau^{2}\right)d\sigma d\tau}}
and the Laplacian equals
∇
2
Φ
=
1
σ
2
+
τ
2
(
∂
2
Φ
∂
σ
2
+
∂
2
Φ
∂
τ
2
)
superscript
∇
2
Φ
1
superscript
𝜎
2
superscript
𝜏
2
superscript
2
Φ
superscript
𝜎
2
superscript
2
Φ
superscript
𝜏
2
{\displaystyle{\displaystyle\nabla^{2}\Phi={\frac{1}{\sigma^{2}+\tau^{2}}}%
\left({\frac{\partial^{2}\Phi}{\partial\sigma^{2}}}+{\frac{\partial^{2}\Phi}{%
\partial\tau^{2}}}\right)}}
Other differential operators such as
∇
⋅
𝐅
⋅
∇
𝐅
{\displaystyle{\displaystyle\nabla\cdot\mathbf{F}}}
and
∇
×
𝐅
∇
𝐅
{\displaystyle{\displaystyle\nabla\times\mathbf{F}}}
can be expressed in the coordinates
(
σ
,
τ
)
𝜎
𝜏
{\displaystyle{\displaystyle(\sigma,\tau)}}
by substituting
the scale factors into the general formulae
found in orthogonal coordinates .
Three-dimensional parabolic coordinates
Coordinate surfaces of the three-dimensional parabolic coordinates. The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point
P (shown as a black sphere) with
Cartesian coordinates roughly (1.0, -1.732, 1.5).
The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates . The parabolic cylindrical coordinates are produced by projecting in the
z
𝑧
{\displaystyle{\displaystyle z}}
-direction.
Rotation about the symmetry axis of the parabolae produces a set of
confocal paraboloids, the coordinate system of tridimensional parabolic coordinates. Expressed in terms of cartesian coordinates:
x
=
σ
τ
cos
φ
𝑥
𝜎
𝜏
𝜑
{\displaystyle{\displaystyle x=\sigma\tau\cos\varphi}}
y
=
σ
τ
sin
φ
𝑦
𝜎
𝜏
𝜑
{\displaystyle{\displaystyle y=\sigma\tau\sin\varphi}}
z
=
1
2
(
τ
2
-
σ
2
)
𝑧
1
2
superscript
𝜏
2
superscript
𝜎
2
{\displaystyle{\displaystyle z={\frac{1}{2}}\left(\tau^{2}-\sigma^{2}\right)}}
where the parabolae are now aligned with the
z
𝑧
{\displaystyle{\displaystyle z}}
-axis,
about which the rotation was carried out. Hence, the azimuthal angle
ϕ
italic-ϕ
{\displaystyle{\displaystyle\phi}}
is defined
tan
φ
=
y
x
𝜑
𝑦
𝑥
{\displaystyle{\displaystyle\tan\varphi={\frac{y}{x}}}}
The surfaces of constant
σ
𝜎
{\displaystyle{\displaystyle\sigma}}
form confocal paraboloids
2
z
=
x
2
+
y
2
σ
2
-
σ
2
2
𝑧
superscript
𝑥
2
superscript
𝑦
2
superscript
𝜎
2
superscript
𝜎
2
{\displaystyle{\displaystyle 2z={\frac{x^{2}+y^{2}}{\sigma^{2}}}-\sigma^{2}}}
that open upwards (i.e., towards
+
z
𝑧
{\displaystyle{\displaystyle+z}}
) whereas the surfaces of constant
τ
𝜏
{\displaystyle{\displaystyle\tau}}
form confocal paraboloids
2
z
=
-
x
2
+
y
2
τ
2
+
τ
2
2
𝑧
superscript
𝑥
2
superscript
𝑦
2
superscript
𝜏
2
superscript
𝜏
2
{\displaystyle{\displaystyle 2z=-{\frac{x^{2}+y^{2}}{\tau^{2}}}+\tau^{2}}}
that open downwards (i.e., towards
-
z
𝑧
{\displaystyle{\displaystyle-z}}
). The foci of all these paraboloids are located at the origin.
The Riemannian metric tensor associated with this coordinate system is
g
i
j
=
[
σ
2
+
τ
2
0
0
0
σ
2
+
τ
2
0
0
0
σ
2
τ
2
]
subscript
𝑔
𝑖
𝑗
superscript
𝜎
2
superscript
𝜏
2
0
0
0
superscript
𝜎
2
superscript
𝜏
2
0
0
0
superscript
𝜎
2
superscript
𝜏
2
{\displaystyle{\displaystyle g_{ij}={\begin{bmatrix}\sigma^{2}+\tau^{2}&0&0\\
0&\sigma^{2}+\tau^{2}&0\\
0&0&\sigma^{2}\tau^{2}\end{bmatrix}}}}
Three-dimensional scale factors
The three dimensional scale factors are:
h
σ
=
σ
2
+
τ
2
subscript
ℎ
𝜎
superscript
𝜎
2
superscript
𝜏
2
{\displaystyle{\displaystyle h_{\sigma}={\sqrt{\sigma^{2}+\tau^{2}}}}}
h
τ
=
σ
2
+
τ
2
subscript
ℎ
𝜏
superscript
𝜎
2
superscript
𝜏
2
{\displaystyle{\displaystyle h_{\tau}={\sqrt{\sigma^{2}+\tau^{2}}}}}
h
φ
=
σ
τ
subscript
ℎ
𝜑
𝜎
𝜏
{\displaystyle{\displaystyle h_{\varphi}=\sigma\tau}}
It is seen that the scale factors
h
σ
subscript
ℎ
𝜎
{\displaystyle{\displaystyle h_{\sigma}}}
and
h
τ
subscript
ℎ
𝜏
{\displaystyle{\displaystyle h_{\tau}}}
are the same as in the two-dimensional case. The infinitesimal volume element is then
d
V
=
h
σ
h
τ
h
φ
d
σ
d
τ
d
φ
=
σ
τ
(
σ
2
+
τ
2
)
d
σ
d
τ
d
φ
𝑑
𝑉
subscript
ℎ
𝜎
subscript
ℎ
𝜏
subscript
ℎ
𝜑
𝑑
𝜎
𝑑
𝜏
𝑑
𝜑
𝜎
𝜏
superscript
𝜎
2
superscript
𝜏
2
𝑑
𝜎
𝑑
𝜏
𝑑
𝜑
{\displaystyle{\displaystyle dV=h_{\sigma}h_{\tau}h_{\varphi}\,d\sigma\,d\tau%
\,d\varphi=\sigma\tau\left(\sigma^{2}+\tau^{2}\right)\,d\sigma\,d\tau\,d%
\varphi}}
and the Laplacian is given by
∇
2
Φ
=
1
σ
2
+
τ
2
[
1
σ
∂
∂
σ
(
σ
∂
Φ
∂
σ
)
+
1
τ
∂
∂
τ
(
τ
∂
Φ
∂
τ
)
]
+
1
σ
2
τ
2
∂
2
Φ
∂
φ
2
superscript
∇
2
Φ
1
superscript
𝜎
2
superscript
𝜏
2
delimited-[]
1
𝜎
𝜎
𝜎
Φ
𝜎
1
𝜏
𝜏
𝜏
Φ
𝜏
1
superscript
𝜎
2
superscript
𝜏
2
superscript
2
Φ
superscript
𝜑
2
{\displaystyle{\displaystyle\nabla^{2}\Phi={\frac{1}{\sigma^{2}+\tau^{2}}}%
\left[{\frac{1}{\sigma}}{\frac{\partial}{\partial\sigma}}\left(\sigma{\frac{%
\partial\Phi}{\partial\sigma}}\right)+{\frac{1}{\tau}}{\frac{\partial}{%
\partial\tau}}\left(\tau{\frac{\partial\Phi}{\partial\tau}}\right)\right]+{%
\frac{1}{\sigma^{2}\tau^{2}}}{\frac{\partial^{2}\Phi}{\partial\varphi^{2}}}}}
Other differential operators such as
∇
⋅
𝐅
⋅
∇
𝐅
{\displaystyle{\displaystyle\nabla\cdot\mathbf{F}}}
and
∇
×
𝐅
∇
𝐅
{\displaystyle{\displaystyle\nabla\times\mathbf{F}}}
can be expressed in the coordinates
(
σ
,
τ
,
ϕ
)
𝜎
𝜏
italic-ϕ
{\displaystyle{\displaystyle(\sigma,\tau,\phi)}}
by substituting
the scale factors into the general formulae
found in orthogonal coordinates .
See also
Bibliography
Morse PM , Feshbach H (1953). Methods of Theoretical Physics, Part I . New York: McGraw-Hill. p. 660. ISBN 0-07-043316-X . LCCN 52011515 .
Margenau H , Murphy GM (1956). The Mathematics of Physics and Chemistry . New York: D. van Nostrand. pp. 185–186 . LCCN 55010911 .
Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers . New York: McGraw-Hill. p. 180. LCCN 59014456 . ASIN B0000CKZX7.
Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs . New York: Springer Verlag. p. 96. LCCN 67025285 .
Zwillinger D (1992). Handbook of Integration . Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9 . Same as Morse & Feshbach (1953), substituting u k for ξk .
Moon P, Spencer DE (1988). "Parabolic Coordinates (μ, ν, ψ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer-Verlag. pp. 34–36 (Table 1.08). ISBN 978-0-387-18430-2 .
External links
أنظمة الإحداثيات المتعامدة
ثنائية الأبعاد ثلاثية الأبعاد