نظائر النحاس
| |||||||||||||||||||||||||||||||||
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 27 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours, while the least stable is 54Cu with a half-life of approximately 75 ns. Most have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β− decay. 64Cu decays by both β+ and β−.[2]
68Cu, 69Cu, 71Cu, 72Cu, and 76Cu each have one metastable isomer. 70Cu has two isomers, making a total of 7 distinct isomers. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 69mCu with a half-life of 360 ns.[2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
الرنين المغناطيسي النووي للنحاس
Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of -3/2, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[3]
قائمة النظائر
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life |
Decay mode [n 4] |
Daughter isotope [n 5] |
Spin and parity [n 6][n 7] |
التوافر الطبيعي (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
طاقة الإثارة[n 7] | Normal proportion | Range of variation | |||||||||||||||||
52Cu | 29 | 23 | 51.99718(28)# | p | 51Ni | (3+)# | |||||||||||||
53Cu | 29 | 24 | 52.98555(28)# | <300 ns | p | 52Ni | (3/2−)# | ||||||||||||
54Cu | 29 | 25 | 53.97671(23)# | <75 ns | p | 53Ni | (3+)# | ||||||||||||
55Cu | 29 | 26 | 54.96605(32)# | 40# ms [>200 ns] | β+ | 55Ni | 3/2−# | ||||||||||||
p | 54Ni | ||||||||||||||||||
56Cu | 29 | 27 | 55.95856(15)# | 93(3) ms | β+ | 56Ni | (4+) | ||||||||||||
57Cu | 29 | 28 | 56.949211(17) | 196.3(7) ms | β+ | 57Ni | 3/2− | ||||||||||||
58Cu | 29 | 29 | 57.9445385(17) | 3.204(7) s | β+ | 58Ni | 1+ | ||||||||||||
59Cu | 29 | 30 | 58.9394980(8) | 81.5(5) s | β+ | 59Ni | 3/2− | ||||||||||||
60Cu | 29 | 31 | 59.9373650(18) | 23.7(4) min | β+ | 60Ni | 2+ | ||||||||||||
61Cu | 29 | 32 | 60.9334578(11) | 3.333(5) h | β+ | 61Ni | 3/2− | ||||||||||||
62Cu | 29 | 33 | 61.932584(4) | 9.673(8) min | β+ | 62Ni | 1+ | ||||||||||||
63Cu | 29 | 34 | 62.9295975(6) | Stable | 3/2− | 0.6915(15) | 0.68983–0.69338 | ||||||||||||
64Cu | 29 | 35 | 63.9297642(6) | 12.700(2) h | β+ (61%) | 64Ni | 1+ | ||||||||||||
β− (39%) | 64Zn | ||||||||||||||||||
65Cu | 29 | 36 | 64.9277895(7) | Stable | 3/2− | 0.3085(15) | 0.30662–0.31017 | ||||||||||||
66Cu | 29 | 37 | 65.9288688(7) | 5.120(14) min | β− | 66Zn | 1+ | ||||||||||||
67Cu | 29 | 38 | 66.9277303(13) | 61.83(12) h | β− | 67Zn | 3/2− | ||||||||||||
68Cu | 29 | 39 | 67.9296109(17) | 31.1(15) s | β− | 68Zn | 1+ | ||||||||||||
68mCu | 721.6(7) keV | 3.75(5) min | IT (84%) | 68Cu | (6−) | ||||||||||||||
β− (16%) | 68Zn | ||||||||||||||||||
69Cu | 29 | 40 | 68.9294293(15) | 2.85(15) min | β− | 69Zn | 3/2− | ||||||||||||
69mCu | 2741.8(10) keV | 360(30) ns | (13/2+) | ||||||||||||||||
70Cu | 29 | 41 | 69.9323923(17) | 44.5(2) s | β− | 70Zn | (6−) | ||||||||||||
70m1Cu | 101.1(3) keV | 33(2) s | β− | 70Zn | (3−) | ||||||||||||||
70m2Cu | 242.6(5) keV | 6.6(2) s | 1+ | ||||||||||||||||
71Cu | 29 | 42 | 70.9326768(16) | 19.4(14) s | β− | 71Zn | (3/2−) | ||||||||||||
71mCu | 2756(10) keV | 271(13) ns | (19/2−) | ||||||||||||||||
72Cu | 29 | 43 | 71.9358203(15) | 6.6(1) s | β− | 72Zn | (1+) | ||||||||||||
72mCu | 270(3) keV | 1.76(3) µs | (4−) | ||||||||||||||||
73Cu | 29 | 44 | 72.936675(4) | 4.2(3) s | β− (>99.9%) | 73Zn | (3/2−) | ||||||||||||
β−, n (<.1%) | 72Zn | ||||||||||||||||||
74Cu | 29 | 45 | 73.939875(7) | 1.594(10) s | β− | 74Zn | (1+, 3+) | ||||||||||||
75Cu | 29 | 46 | 74.94190(105) | 1.224(3) s | β− (96.5%) | 75Zn | (3/2−)# | ||||||||||||
β−, n (3.5%) | 74Zn | ||||||||||||||||||
76Cu | 29 | 47 | 75.945275(7) | 641(6) ms | β− (97%) | 76Zn | (3, 5) | ||||||||||||
β−, n (3%) | 75Zn | ||||||||||||||||||
76mCu | 0(200)# keV | 1.27(30) s | β− | 76Zn | (1, 3) | ||||||||||||||
77Cu | 29 | 48 | 76.94785(43)# | 469(8) ms | β− | 77Zn | 3/2−# | ||||||||||||
78Cu | 29 | 49 | 77.95196(43)# | 342(11) ms | β− | 78Zn | |||||||||||||
79Cu | 29 | 50 | 78.95456(54)# | 188(25) ms | β−, n (55%) | 78Zn | 3/2−# | ||||||||||||
β− (45%) | 79Zn | ||||||||||||||||||
80Cu | 29 | 51 | 79.96087(64)# | 100# ms [>300 ns] | β− | 80Zn | |||||||||||||
This table header & footer: |
- ^ mCu – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^
أنماط الاضمحلال:
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ أ ب # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
التطبيقات الطبية
Copper offers a relatively large number of radioisotopes that are potentially suitable for use in nuclear medicine.
There is a growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[4]
المراجع
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ أ ب Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi: , Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- ^ "(Cu) Copper NMR".
- ^ Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34
- كتل النظائر من:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi: , Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- التكوين النظيري والكتل الذرية العيارية من:
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A 729: 3–128, doi: , Bibcode: 2003NuPhA.729....3A, https://hal.archives-ouvertes.fr/in2p3-00020241/document
- قالب:NNDC
- قالب:CRC85
- Application of Copper radioisotopes in Medicine (Review Paper):
- Pejman Rowshanfarzad; Mahsheed Sabet; AmirReza Jalilian; Mohsen Kamalidehghan (2006). "An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron". Applied Radiation and Isotopes. 64 (12): 1563–1573. doi:10.1016/j.apradiso.2005.11.012. PMID 16377202.