مستوى إسقاط
في الهندسة الوصفية، يعرف مستوي الإسقاط Projective plane في الجبر الخطي هو مستوي في الفضاء المتجانس لمجموعة كلاسيكية. كما يعرف مستوي الإسقاط في الهندسة المنتهية، على أنه مستوي في الفضاء الثلاثي الأبعاد تحقق فيه خصائص الهندسة المستوية.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
انظر أيضاً
- Block design - a generalization of a finite projective plane.
- Combinatorial design
- Incidence structure
- Generalized polygon
- Projective geometry
- Non-Desarguesian plane
- Smooth projective plane
- Transversals in finite projective planes
- Truncated projective plane - a projective plane with one vertex removed.
- VC dimension of a finite projective plane
الهامش
المراجع
- Albert, A. Adrian; Sandler, Reuben (1968), An Introduction to Finite Projective Planes, New York: Holt, Rinehart and Winston
- Baez, John C. (2002), "The octonions", Bull. Amer. Math. Soc. 39 (2): 145–205, doi:, http://math.ucr.edu/home/baez/octonions/
- Bamberg, John; Penttila, Tim (2015), "Completing Segre's proof of Wedderburn's little theorem", Bulletin of the London Mathematical Society 47 (3): 483–492, doi:, https://api.research-repository.uwa.edu.au/files/9699048/BambergPenttilaRevised.pdf
- Bredon, Glen E. (1993), Topology and Geometry, Springer-Verlag, ISBN 0-387-97926-3
- Bruck, R. H. (1955), "Difference Sets in a Finite Group", Trans. Amer. Math. Soc. 78 (2): 464–481, doi:
- Bruck, R. H.; Bose, R. C. (1964), "The Construction of Translation Planes from Projective Spaces", J. Algebra 1: 85–102, doi:, http://repository.lib.ncsu.edu/bitstream/1840.4/2172/1/ISMS_1963_378.pdf
- Casse, Rey (2006), Projective Geometry: An Introduction, Oxford: Oxford University Press, ISBN 0-19-929886-6
- Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, https://archive.org/details/finitegeometries0000demb
- Gleason, Andrew M. (1956), "Finite Fano planes", American Journal of Mathematics 78 (4): 797–807, doi:
- Hall, Marshall (1943), "Projective planes", Transactions of the American Mathematical Society (American Mathematical Society) 54 (2): 229–277, doi: , ISSN 0002-9947
- Hughes, D.; Piper, F. (1973), Projective Planes, Springer-Verlag, ISBN 0-387-90044-6
- Kárteszi, F. (1976), Introduction to Finite Geometries, Amsterdam: North-Holland, ISBN 0-7204-2832-7
- Lam, Clement W. H. (1991), "The Search for a Finite Projective Plane of order 10", American Mathematical Monthly 98 (4): 305–318, doi:, http://www.cecm.sfu.ca/organics/papers/lam/
- Lindner, Charles C. and Christopher A. Rodger (eds.) Design Theory, CRC-Press; 1 edition (October 31, 1997). ISBN 0-8493-3986-3.
- Lüneburg, Heinz (1980), Translation Planes, Berlin: Springer Verlag, ISBN 0-387-09614-0, https://archive.org/details/translationplane0000lune
- Moulton, Forest Ray (1902), "A Simple Non-Desarguesian Plane Geometry", Transactions of the American Mathematical Society 3 (2): 192–195, doi: , ISSN 0002-9947
- Room, T. G.; Kirkpatrick, P. B. (1971), Miniquaternion Geometry, Cambridge: Cambridge University Press, ISBN 0-521-07926-8
- Shafarevich, I. R. (1994), Basic Algebraic Geometry, Springer-Verlag, ISBN 0-387-54812-2, https://archive.org/details/basicalgebraicge00irsh
- Stevenson, Frederick W. (1972), Projective Planes, San Francisco: W.H. Freeman and Company, ISBN 0-7167-0443-9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
وصلات خارجية
- G. Eric Moorhouse, Projective Planes of Small Order, (2003)
- Ch. Weibel: Survey of Nondesarguesian planes
- Eric W. Weisstein, Projective plane at MathWorld.
- قالب:PlanetMath