مركب من خمس رباعيات الأسطح

Compound of five tetrahedra
Compound of five tetrahedra.png
Type Regular compound
Coxeter symbol {5,3}[5{3,3}] {3,5}[1]
Index UC5, W24
Elements
(As a compound)
5 tetrahedra:
F = 20, E = 30, V = 20
Dual compound Self-dual
Symmetry group chiral icosahedral (I)
Subgroup restricting to one constituent chiral tetrahedral (T)
3D model of a compound of five tetrahedra

The compound of five tetrahedra is one of the five regular polyhedral compounds. This compound polyhedron is also a stellation of the regular icosahedron. It was first described by Edmund Hess in 1876.

It can be seen as a faceting of a regular dodecahedron.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

كمركب

It can be constructed by arranging five tetrahedra in rotational icosahedral symmetry (I), as colored in the upper right model. It is one of five regular compounds which can be constructed from identical Platonic solids.

It shares the same vertex arrangement as a regular dodecahedron.

There are two enantiomorphous forms (the same figure but having opposite chirality) of this compound polyhedron. Both forms together create the reflection symmetric compound of ten tetrahedra.

It has a density of higher than 1.

Spherical compound of five tetrahedra.png
As a spherical tiling
CompoundOfFiveTetrahedra.png
Transparent Models
(Animation)
Five tetrahedra.png
Five interlocked tetrahedra


كتنجم

It can also be obtained by stellating the icosahedron, and is given as Wenninger model index 24.

مخطط التنجم لب التنجم Convex hull
Compound of five tetrahedra stellation facets.svg Icosahedron.png
Icosahedron
Dodecahedron.png
Dodecahedron

As a facetting

Five tetrahedra in a dodecahedron.

It is a faceting of a dodecahedron, as shown at left.

نظرية المجموعات

The compound of five tetrahedra is a geometric illustration of the notion of orbits and stabilizers, as follows.

The symmetry group of the compound is the (rotational) icosahedral group I of order 60, while the stabilizer of a single chosen tetrahedron is the (rotational) tetrahedral group T of order 12, and the orbit space I/T (of order 60/12 = 5) is naturally identified with the 5 tetrahedra – the coset gT corresponds to which tetrahedron g sends the chosen tetrahedron to.

خاصية ثنائية غير معتادة

Compound of five tetrahedra

This compound is unusual, in that the dual figure is the enantiomorph of the original. If the faces are twisted to the right, then the vertices are twisted to the left. When we dualise, the faces dualise to right-twisted vertices and the vertices dualise to left-twisted faces, giving the chiral twin. Figures with this property are extremely rare.

انظر أيضاً

المراجع

  1. ^ Regular polytopes, p.98
  • Wenninger, Magnus (1974). Polyhedron Models. Cambridge University Press. ISBN 0-521-09859-9.
  • H.S.M. Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, 3.6 The five regular compounds, pp.47-50, 6.2 Stellating the Platonic solids, pp.96-104
  • Coxeter, Harold Scott MacDonald; Du Val, P.; Flather, H. T.; Petrie, J. F. (1999). The Fifty-Nine Icosahedra (3rd ed.). Tarquin. ISBN 978-1-899618-32-3. MR 0676126. (1st Edn University of Toronto (1938))

وصلات خارجية

Notable stellations of the icosahedron
Regular Uniform duals Regular compounds Regular star Others
(Convex) icosahedron Small triambic icosahedron Medial triambic icosahedron Great triambic icosahedron Compound of five octahedra Compound of five tetrahedra Compound of ten tetrahedra Great icosahedron Excavated dodecahedron Final stellation
Zeroth stellation of icosahedron.png First stellation of icosahedron.png Ninth stellation of icosahedron.png First compound stellation of icosahedron.png Second compound stellation of icosahedron.png Third compound stellation of icosahedron.png Sixteenth stellation of icosahedron.png Third stellation of icosahedron.png Seventeenth stellation of icosahedron.png
Stellation diagram of icosahedron.svg Small triambic icosahedron stellation facets.svg Great triambic icosahedron stellation facets.svg Compound of five octahedra stellation facets.svg Compound of five tetrahedra stellation facets.svg Compound of ten tetrahedra stellation facets.svg Great icosahedron stellation facets.svg Excavated dodecahedron stellation facets.svg Echidnahedron stellation facets.svg
The stellation process on the icosahedron creates a number of related polyhedra and مركبات بتماثل عشريني الأوجه.