متغير عدم اليقين

The orbits of kilometre class NEAs are generally well known, though a few have been lost. However, large numbers of smaller NEAs have highly uncertain orbits.[1]

The uncertainty parameter U is introduced by the Minor Planet Center (MPC) to quantify the uncertainty of a perturbed orbital solution for a minor planet.[2][3] The parameter is a logarithmic scale from 0 to 9 that measures the anticipated longitudinal uncertainty[4] in the minor planet's mean anomaly after 10 years.[2][3][5] The larger the number, the larger the uncertainty. The uncertainty parameter is also known as condition code in JPL's Small-Body Database Browser.[3][5][6] The U value should not be used as a predictor for the uncertainty in the future motion of near-Earth objects.[2]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

عدم اليقين المداري

Classical Kuiper belt objects 40–50 AU from the Sun
JPL SBDB
Uncertainty
parameter

 
Horizons
January 2018
Uncertainty in
distance from the Sun

(millions of kilometers)
Object
 
Reference
Ephemeris

Location: @sun
Table setting: 39
0 ±0.01 (134340) Pluto E2022-J69
1 ±0.04 2013 BL76 JPL
2 ±0.14 20000 Varuna JPL
3 ±0.84 19521 Chaos JPL
4 ±1.4 (15807) 1994 GV9 JPL
5 ±8.2 (160256) 2002 PD149 JPL
6 ±70 1999 DH8 JPL
7 ±190 1999 CQ153 JPL
8 ±590 1995 KJ1 JPL
9 ±1,600 1995 GJ JPL
‘D’   Data insufficient for orbit determination.
‘E’   Eccentricity was guessed instead of determined.[7]
‘F’   Both ‘D’ and ‘E’ apply.[7]

Orbital uncertainty is related to several parameters used in the orbit determination process including the number of observations (measurements), the time spanned by those observations (observation arc), the quality of the observations (e.g. radar vs. optical), and the geometry of the observations. Of these parameters, the time spanned by the observations generally has the greatest effect on the orbital uncertainty.[8]

Occasionally, the Minor Planet Center substitutes a letter-code (‘D’, ‘E’, ‘F’) for the uncertainty parameter.

D     Objects with a ‘D’ have only been observed for a single opposition, and have been assigned two (or more) different designations ("double").
E Objects such as 2003 UU291 with a condition code ‘E’[9] in the place of a numeric uncertainty parameter denotes orbits for which the listed eccentricity was assumed, rather than determined.[7] Objects with assumed eccentricities are generally considered lost if they have not recently been observed because their orbits are not well constrained.[بحاجة لمصدر]
F Objects with an ‘F’ fall in both categories ‘D’ and ‘E’.[7]


الحساب

The U parameter is calculated in two steps.[2][10] First the in-orbit longitude runoff in seconds of arc per decade is calculated, (i.e. the discrepancy between the observed and calculated position extrapolated over ten years):

with

uncertainty in the perihelion time in days
eccentricity of the determined orbit
orbital period in years
uncertainty in the orbital period in days
, Gaussian gravitational constant, converted to degrees

Then, the obtained in-orbit longitude runoff is converted to the "uncertainty parameter" U, which is an integer between 0 and 9. The calculated number can be less than 0 or more than 9, but in those cases either 0 or 9 is used instead. The formula for cutting off the calculated value of U is

For instance: As of 10 September 2016, Ceres technically has an uncertainty of around −2.6, but is instead displayed as the minimal 0.

The result is the same regardless of the choice of base for the logarithm, so long as the same logarithm is used throughout the formula; e.g. for "log" = log10, loge, ln, or log2 the calculated value of U remains the same if the logarithm is the same in both places in the formula.

Function graph U(r)
U Runoff
Longitude runoff per decade
0 < 1.0 arc second
1 1.0–4.4 arc seconds
2 4.4–19.6 arc seconds
3 19.6 arc seconds – 1.4 arc minutes
4 1.4–6.4 arc minutes
5 6.4–28 arc minutes
6 28 arc minutes – 2.1°
7 2.1°–9.2°
8 9.2°–41°
9 > 41°

648 000 is the number of arc seconds in a half circle, so a value greater than 9 would be meaningless as we would have no idea where the object will be in 10 years within the orbit.

References

  1. ^ "Orbits for Near Earth Asteroids (NEAs)". Minor Planet Center. International Astronomical Union. Retrieved 25 June 2020. via "M.P. Orbit Format". Minor Planet Center. International Astronomical Union.
  2. ^ أ ب ت ث "Uncertainty parameter 'U'". Minor Planet Center. International Astronomical Union. Retrieved 15 نوفمبر 2011.
  3. ^ أ ب ت "Trajectory Browser User Guide". Ames Research Center. Mission Design Center Trajectory Browser. NASA. Retrieved 3 مارس 2016.
  4. ^ Editorial Notice. The Minor Planet Circulars / Minor Planets and Comets. 1995-02-15. pp. 24597. MPC 24597–24780. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. http://www.minorplanetcenter.net/iau/ECS/MPCArchive/1995/MPC_19950215.pdf. Retrieved on 3 March 2016. 
  5. ^ أ ب Drake, Bret G. (2011). Strategic implications of human exploration of near-Earth asteroids. NASA Technical Reports. NASA. 2011-0020788. Archived from the original. You must specify the date the archive was made using the |archivedate= parameter. https://ntrs.nasa.gov/search.jsp?R=20110020788. Retrieved on 2016-03-03. 
  6. ^ "Definition / description for SBDB parameter / field: condition code". JPL Solar System Dynamics. Retrieved 15 نوفمبر 2011.
  7. ^ أ ب ت ث "Export format for minor-planet orbits". Minor Planet Center. International Astronomical Union. Retrieved 3 مارس 2016.
  8. ^ "Near-Earth objects close-approach uncertainties". JPL Near-Earth Object Program Office. NASA / JPL. 31 أغسطس 2005. Archived from the original on 24 مارس 2004. Retrieved 15 نوفمبر 2011.
  9. ^ "2003 UU291". Minor Planet Center. International Astronomical Union.
  10. ^ Desmars, Josselin; Bancelin, David; Hestroffer, Daniel; Thuillot, William (Jun 2011). Alecian, G.; Belkacem, K.; Samadi, R.; Valls-Gabaud, D. (eds.). "Statistical analysis on the uncertainty of asteroid ephemerides". SF2A 2011: Annual Meeting of the French Society of Astronomy and Astrophysics. Paris, France: 639–642. Bibcode:2011sf2a.conf..639D. Retrieved 3 March 2016.