عدد مضلعي
في الرياضيات، العدد المضلعي هو عدد من الممكن ترتيبه على شكل مضلع. حيث اكتشف الرياضياتيون في القدم أنه من الممكن تمثيل الأعداد على شكل أشكال هندسية باستخدام حبوب أو حصى، وهذه الأعداد تسمى بالأعداد الشكلية.
على سبيل المثال من الممكن تمثيل العدد 10 بترتيبه على شكل مثلث كالتالي (عدد مثلثي):
ولكن لا يمكن للعدد 10 ترتيبه على شكل مربع، بل يمكن ترتيب العدد 9 (يسمى مربع عدد) على الشكل التالي:
وهناك بعض الأعداد مثل 36 يمكن ترتيبها بشكل مربع ومثلثي (تسمى أعداد مربعية مثلثية) على الشكل التالي:
يعتبر العدد 1 هو أول الأعداد المضلعية مهما كان عدد الأضلاع. توضح الأشكال التالية كيفية الحصول على أعداد أعلى بتوسيع الأشكال في اتجاه واحد، بالنسبة لـ
- أعداد مثلثية:
1 | 3 | 6 | 10 | |||
---|---|---|---|---|---|---|
- أعداد مربعية:
1 | 4 | 9 | 16 | |||
---|---|---|---|---|---|---|
من الممكن إيضاً إنشاء أعداد شكلية بترتيب أعلى على الرغم من أن الشبكة لن تكون منتظمة مثل الأعداد الأولى من الأعداد المسدسة:
1 | 6 | 15 | 28 | |||
---|---|---|---|---|---|---|
إذا كان s هو عدد أضلاع المضلع، فتكون الصيغة من أجل العدد ذو الترتيب n لمضلع ذو عدد أضلاع s يعطى بالعلاقة التالية:
.
الاسم | الصيغة | n=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
مثلثي | ½(1n² + 1n) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 | 91 |
مربعي | ½(2n² - 0n) | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 |
مخمسي | ½(3n² - 1n) | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 | 117 | 145 | 176 | 210 | 247 |
مسدسي | ½(4n² - 2n) | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 | 153 | 190 | 231 | 276 | 325 |
مسبع | ½(5n² - 3n) | 1 | 7 | 18 | 34 | 55 | 81 | 112 | 148 | 189 | 235 | 286 | 342 | 403 |
مثمن | ½(6n² - 4n) | 1 | 8 | 21 | 40 | 65 | 96 | 133 | 176 | 225 | 280 | 341 | 408 | 481 |
متسع | ½(7n² - 5n) | 1 | 9 | 24 | 46 | 75 | 111 | 154 | 204 | 261 | 325 | 396 | 474 | 559 |
معشر | ½(8n² - 6n) | 1 | 10 | 27 | 52 | 85 | 126 | 175 | 232 | 297 | 370 | 451 | 540 | 637 |
Hendecagonal | ½(9n² - 7n) | 1 | 11 | 30 | 58 | 95 | 141 | 196 | 260 | 333 | 415 | 506 | 606 | 715 |
Dodecagonal | ½(10n² - 8n) | 1 | 12 | 33 | 64 | 105 | 156 | 217 | 288 | 369 | 460 | 561 | 672 | 793 |
Tridecagonal | ½(11n² - 9n) | 1 | 13 | 36 | 70 | 115 | 171 | 238 | 316 | 405 | 505 | 616 | 738 | 871 |
Tetradecagonal | ½(12n² - 10n) | 1 | 14 | 39 | 76 | 125 | 186 | 259 | 344 | 441 | 550 | 671 | 804 | 949 |
Pentadecagonal | ½(13n² - 11n) | 1 | 15 | 42 | 82 | 135 | 201 | 280 | 372 | 477 | 595 | 726 | 870 | 1027 |
Hexadecagonal | ½(14n² - 12n) | 1 | 16 | 45 | 88 | 145 | 216 | 301 | 400 | 513 | 640 | 781 | 936 | 1105 |
Heptadecagonal | ½(15n² - 13n) | 1 | 17 | 48 | 94 | 155 | 231 | 322 | 428 | 549 | 685 | 836 | 1002 | 1183 |
Octadecagonal | ½(16n² - 14n) | 1 | 18 | 51 | 100 | 165 | 246 | 343 | 456 | 585 | 730 | 891 | 1068 | 1261 |
Nonadecagonal | ½(17n² - 15n) | 1 | 19 | 54 | 106 | 175 | 261 | 364 | 484 | 621 | 775 | 946 | 1134 | 1339 |
Icosagonal | ½(18n² - 16n) | 1 | 20 | 57 | 112 | 185 | 276 | 385 | 512 | 657 | 820 | 1001 | 1200 | 1417 |
Icosihenagonal | ½(19n² - 17n) | 1 | 21 | 60 | 118 | 195 | 291 | 406 | 540 | 693 | 865 | 1056 | 1266 | 1495 |
Icosidigonal | ½(20n² - 18n) | 1 | 22 | 63 | 124 | 205 | 306 | 427 | 568 | 729 | 910 | 1111 | 1332 | 1573 |
Icositrigonal | ½(21n² - 19n) | 1 | 23 | 66 | 130 | 215 | 321 | 448 | 596 | 765 | 955 | 1166 | 1398 | 1651 |
Icositetragonal | ½(22n² - 20n) | 1 | 24 | 69 | 136 | 225 | 336 | 469 | 624 | 801 | 1000 | 1221 | 1464 | 1729 |
Icosipentagonal | ½(23n² - 21n) | 1 | 25 | 72 | 142 | 235 | 351 | 490 | 652 | 837 | 1045 | 1276 | 1530 | 1807 |
Icosihexagonal | ½(24n² - 22n) | 1 | 26 | 75 | 148 | 245 | 366 | 511 | 680 | 873 | 1090 | 1331 | 1596 | 1885 |
Icosiheptagonal | ½(25n² - 23n) | 1 | 27 | 78 | 154 | 255 | 381 | 532 | 708 | 909 | 1135 | 1386 | 1662 | 1963 |
Icosioctagonal | ½(26n² - 24n) | 1 | 28 | 81 | 160 | 265 | 396 | 553 | 736 | 945 | 1180 | 1441 | 1728 | 2041 |
Icosinonagonal | ½(27n² - 25n) | 1 | 29 | 84 | 166 | 275 | 411 | 574 | 764 | 981 | 1225 | 1496 | 1794 | 2119 |
Triacontagonal | ½(28n² - 26n) | 1 | 30 | 87 | 172 | 285 | 426 | 595 | 792 | 1017 | 1270 | 1551 | 1860 | 2197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
مراجع
- The Penguin Dictionary of Curious and Interesting Numbers, David Wells (Penguin Books, 1997) [ISBN 0-14-026149-4].
- الأعداد المضلعة على بلانيت ماث(لغة إنكليزية).
- الأعداد المضلعة على ماثوورلد(لغة إنكليزية).