حلقة (هندسة رياضية)

An annulus
Illustration of Mamikon's visual calculus method showing that the areas of two annuli with the same chord length are the same regardless of inner and outer radii.[1]

في الرياضيات، وتحديداً في الهندسة الرياضية يعطى شكل الحلقة في المستوي على شكل قرص مفرغ بدائرة مشتركة المركز مع مركز القرص. تعادل الحلقة طوبولوجياً إسطوانة مفرغة والمستوي المثقوب.

تعطى مساحة الحلقة بأخذ فرق مساحة الدائرتين ذاتي أنصاف الأقطار R و r على الشكل التالي:

The open annulus is topologically equivalent to both the open cylinder S1 × (0,1) and the punctured plane.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Area

The area of an annulus is the difference in the areas of the larger circle of radius R and the smaller one of radius r:

As a corollary of the chord formula, the area bounded by the circumcircle and incircle of every unit convex regular polygon is π/4

The area of an annulus is determined by the length of the longest line segment within the annulus, which is the chord tangent to the inner circle, 2d in the accompanying diagram. That can be shown using the Pythagorean theorem since this line is tangent to the smaller circle and perpendicular to its radius at that point, so d and r are sides of a right-angled triangle with hypotenuse R, and the area of the annulus is given by

The area can also be obtained via calculus by dividing the annulus up into an infinite number of annuli of infinitesimal width and area ρ dρ and then integrating from ρ = r to ρ = R:

The area of an annulus sector of angle θ, with θ measured in radians, is given by


Complex structure

In complex analysis an annulus ann(a; r, R) in the complex plane is an open region defined as

If r is 0, the region is known as the punctured disk (a disk with a point hole in the center) of radius R around the point a.

As a subset of the complex plane, an annulus can be considered as a Riemann surface. The complex structure of an annulus depends only on the ratio r/R. Each annulus ann(a; r, R) can be holomorphically mapped to a standard one centered at the origin and with outer radius 1 by the map

The inner radius is then r/R < 1.

The Hadamard three-circle theorem is a statement about the maximum value a holomorphic function may take inside an annulus.

The Joukowsky transform conformally maps an annulus onto an ellipse with a slit cut between foci.

انظر أيضاً

References

  1. ^ Haunsperger, Deanna; Kennedy, Stephen (2006). The Edge of the Universe: Celebrating Ten Years of Math Horizons. ISBN 9780883855553. Retrieved 9 May 2017.

External links

شعار قاموس المعرفة.png
الكلمات الدالة: