حالة متماسكة معتصرة

الحالة المتماسكة المعتصرة Squeezed coherent state هي كل حالة ضمن فضاء هلبرت في ميكانيكا الكم والتي تحقق مبدأ الإرتياب بأدنى قيمة لجداء الإرتيابات أي :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

أمثلة للحالات المعتصرة

Depending on at which phase the state's quantum noise is reduced, one can distinguish amplitude-squeezed and phase-squeezed states or general quadrature squeezed states. If no coherent excitation exists the state is called a squeezed vacuum. The figures below give a nice visual demonstration of the close connection between squeezed states and Heisenberg's uncertainty relation: Diminishing the quantum noise at a specific quadrature (phase) of the wave has as a direct consequence an enhancement of the noise of the complementary[بحاجة لتوضيح] quadrature, that is, the field at the phase shifted by .

Figure 1: Measured quantum noise of the electric field of different squeezed states depends on the phase of the light field. For the first two states a 3π-interval is shown; for the last three states, belonging to a different set of measurements, it is a 4π-interval.[1] (source: external link 1)
Figure 2: Oscillating wave packets of the five states.
Figure 3: Wigner functions of the five states. The ripples are due to experimental inaccuracies.

من أعلى:

  • حالة فارغة
  • حالة فارغة معتصرة
  • حالة طور معتصر
  • حالة معتصرةى عشوائية
  • Amplitude-squeezed state


توزيعات أعداد الفوتونات وتوزيعات الأطوار للحالات المتماسكة المعتصرة

الزاوية المعتصرة، that is the phase with minimum quantum noise, has a large influence on the photon number distribution of the light wave and its phase distribution as well.

Figure 4: Experimental photon number distributions for an amplitude-squeezed state, a coherent state, and a phase squeezed state reconstructed from measurements of the quantum statistics. Bars refer to theory, dots to experimental values.[1] (source: link 1)
Figure 5: Pegg-Barnett phase distribution of the three states.

For amplitude squeezed light the photon number distribution is usually narrower than the one of a coherent state of the same amplitude resulting in sub-Poissonian light, whereas its phase distribution is wider. The opposite is true for the phase-squeezed light, which displays a large intensity (photon number) noise but a narrow phase distribution. Nevertheless the statistics of amplitude squeezed light was not observed directly with photon number resolving detector due to experimental difficulty.[2]

Figure 4: Reconstructed and theoretical photon number distributions for a squeezed-vacuum state.[1] (source: link 1)

For the squeezed vacuum state the photon number distribution displays odd-even-oscillations. This can be explained by the mathematical form of the squeezing operator, that resembles the operator for two-photon generation and annihilation processes. Photons in a squeezed vacuum state are more likely to appear in pairs.


انظر أيضاً

الهامش

  1. ^ أ ب ت G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)
  2. ^ Entanglement evaluation with Fisher information - http://arxiv.org/pdf/quant-ph/0612099

وصلات خارجية