حالة متماسكة معتصرة
الحالة المتماسكة المعتصرة Squeezed coherent state هي كل حالة ضمن فضاء هلبرت في ميكانيكا الكم والتي تحقق مبدأ الإرتياب بأدنى قيمة لجداء الإرتيابات أي :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
أمثلة للحالات المعتصرة
Depending on at which phase the state's quantum noise is reduced, one can distinguish amplitude-squeezed and phase-squeezed states or general quadrature squeezed states. If no coherent excitation exists the state is called a squeezed vacuum. The figures below give a nice visual demonstration of the close connection between squeezed states and Heisenberg's uncertainty relation: Diminishing the quantum noise at a specific quadrature (phase) of the wave has as a direct consequence an enhancement of the noise of the complementary[بحاجة لتوضيح] quadrature, that is, the field at the phase shifted by .
من أعلى:
- حالة فارغة
- حالة فارغة معتصرة
- حالة طور معتصر
- حالة معتصرةى عشوائية
- Amplitude-squeezed state
توزيعات أعداد الفوتونات وتوزيعات الأطوار للحالات المتماسكة المعتصرة
الزاوية المعتصرة، that is the phase with minimum quantum noise, has a large influence on the photon number distribution of the light wave and its phase distribution as well.
For amplitude squeezed light the photon number distribution is usually narrower than the one of a coherent state of the same amplitude resulting in sub-Poissonian light, whereas its phase distribution is wider. The opposite is true for the phase-squeezed light, which displays a large intensity (photon number) noise but a narrow phase distribution. Nevertheless the statistics of amplitude squeezed light was not observed directly with photon number resolving detector due to experimental difficulty.[2]
For the squeezed vacuum state the photon number distribution displays odd-even-oscillations. This can be explained by the mathematical form of the squeezing operator, that resembles the operator for two-photon generation and annihilation processes. Photons in a squeezed vacuum state are more likely to appear in pairs.
انظر أيضاً
الهامش
- ^ أ ب ت G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light", Nature, 387, 471 (1997)
- ^ Entanglement evaluation with Fisher information - http://arxiv.org/pdf/quant-ph/0612099