Concept in algebraic number theory
In number theory , a Heegner number (as termed by Conway and Guy) is a square-free positive integer d such that the imaginary quadratic field
ℚ
[
-
d
]
ℚ
delimited-[]
𝑑
{\displaystyle{\displaystyle\mathbb{Q}\left[{\sqrt{-d}}\right]}}
has class number 1. Equivalently, the ring of algebraic integers of
ℚ
[
-
d
]
ℚ
delimited-[]
𝑑
{\displaystyle{\displaystyle\mathbb{Q}\left[{\sqrt{-d}}\right]}}
has unique factorization .[1]
The determination of such numbers is a special case of the class number problem , and they underlie several striking results in number theory.
According to the (Baker–)Stark–Heegner theorem there are precisely nine Heegner numbers:
This result was conjectured by Gauss and proved up to minor flaws by Kurt Heegner in 1952. Alan Baker and Harold Stark independently proved the result in 1966, and Stark further indicated the gap in Heegner's proof was minor.[2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Euler's prime-generating polynomial
Euler's prime-generating polynomial
n
2
+
n
+
41
,
superscript
𝑛
2
𝑛
41
{\displaystyle n^{2}+n+41,}
which gives (distinct) primes for n = 0, ..., 39, is related to the Heegner number 163 = 4 · 41 − 1.
Rabinowitz [3] proved that
n
2
+
n
+
p
superscript
𝑛
2
𝑛
𝑝
{\displaystyle n^{2}+n+p}
gives primes for
n
=
0
,
…
,
p
-
2
𝑛
0
…
𝑝
2
{\displaystyle{\displaystyle n=0,\dots,p-2}}
if and only if this quadratic's discriminant
1
-
4
p
1
4
𝑝
{\displaystyle{\displaystyle 1-4p}}
is the negative of a Heegner number.
(Note that
p
-
1
𝑝
1
{\displaystyle{\displaystyle p-1}}
yields
p
2
superscript
𝑝
2
{\displaystyle{\displaystyle p^{2}}}
, so
p
-
2
𝑝
2
{\displaystyle{\displaystyle p-2}}
is maximal.)
1, 2, and 3 are not of the required form, so the Heegner numbers that work are 7, 11, 19, 43, 67, 163, yielding prime generating functions of Euler's form for 2, 3, 5, 11, 17, 41; these latter numbers are called lucky numbers of Euler by F. Le Lionnais .[4]
Almost integers and Ramanujan's constant
Ramanujan's constant is the transcendental number [5]
e
π
163
superscript
𝑒
𝜋
163
{\displaystyle{\displaystyle e^{\pi{\sqrt{163}}}}}
, which is an almost integer , in that it is very close to an integer :[6]
e
π
163
=
262 537 412 640 768 743.999 999 999 999 25
…
≈
640 320
3
+
744
.
superscript
𝑒
𝜋
163
262 537 412 640 768 743.999 999 999 999 25
…
superscript
640 320
3
744
{\displaystyle e^{\pi{\sqrt{163}}}=262\,537\,412\,640\,768\,743.999\,999\,999%
\,999\,25\ldots\approx 640\,320^{3}+744.}
This number was discovered in 1859 by the mathematician Charles Hermite .[7]
In a 1975 April Fool article in Scientific American magazine,[8] "Mathematical Games" columnist Martin Gardner made the hoax claim that the number was in fact an integer, and that the Indian mathematical genius Srinivasa Ramanujan had predicted it—hence its name.
This coincidence is explained by complex multiplication and the q -expansion of the j-invariant .
Detail
In what follows, j(z) denotes the j-invariant of the complex number z. Briefly,
j
(
1
+
-
d
2
)
𝑗
1
𝑑
2
{\displaystyle{\displaystyle\textstyle j\left({\frac{1+{\sqrt{-d}}}{2}}\right)}}
is an integer for d a Heegner number, and
e
π
d
≈
-
j
(
1
+
-
d
2
)
+
744
superscript
𝑒
𝜋
𝑑
𝑗
1
𝑑
2
744
{\displaystyle e^{\pi{\sqrt{d}}}\approx-j\left({\frac{1+{\sqrt{-d}}}{2}}\right%
)+744}
via the q -expansion.
If
τ
𝜏
{\displaystyle{\displaystyle\tau}}
is a quadratic irrational, then its j -invariant
j
(
τ
)
𝑗
𝜏
{\displaystyle{\displaystyle j(\tau)}}
is an algebraic integer of degree
|
Cl
(
𝐐
(
τ
)
)
|
Cl
𝐐
𝜏
{\displaystyle{\displaystyle\left|\mathrm{Cl}{\bigl{(}}\mathbf{Q}(\tau){\bigr{%
)}}\right|}}
, the class number of
𝐐
(
τ
)
𝐐
𝜏
{\displaystyle{\displaystyle\mathbf{Q}(\tau)}}
and the minimal (monic integral) polynomial it satisfies is called the 'Hilbert class polynomial'. Thus if the imaginary quadratic extension
𝐐
(
τ
)
𝐐
𝜏
{\displaystyle{\displaystyle\mathbf{Q}(\tau)}}
has class number 1 (so d is a Heegner number), the j -invariant is an integer.
The q -expansion of j , with its Fourier series expansion written as a Laurent series in terms of
q
=
e
2
π
i
τ
𝑞
superscript
𝑒
2
𝜋
𝑖
𝜏
{\displaystyle{\displaystyle q=e^{2\pi i\tau}}}
, begins as:
j
(
τ
)
=
1
q
+
744
+
196 884
q
+
⋯
.
𝑗
𝜏
1
𝑞
744
196 884
𝑞
⋯
{\displaystyle j(\tau)={\frac{1}{q}}+744+196\,884q+\cdots.}
The coefficients
c
n
subscript
𝑐
𝑛
{\displaystyle{\displaystyle c_{n}}}
asymptotically grow as
ln
(
c
n
)
∼
4
π
n
+
O
(
ln
(
n
)
)
,
similar-to
subscript
𝑐
𝑛
4
𝜋
𝑛
𝑂
𝑛
{\displaystyle\ln(c_{n})\sim 4\pi{\sqrt{n}}+O{\bigl{(}}\ln(n){\bigr{)}},}
and the low order coefficients grow more slowly than
200 000
n
superscript
200 000
𝑛
{\displaystyle{\displaystyle 200\,000^{n}}}
, so for
q
≪
1
200 000
much-less-than
𝑞
1
200 000
{\displaystyle{\displaystyle\textstyle q\ll{\frac{1}{200\,000}}}}
, j is very well approximated by its first two terms. Setting
τ
=
1
+
-
163
2
𝜏
1
163
2
{\displaystyle{\displaystyle\textstyle\tau={\frac{1+{\sqrt{-163}}}{2}}}}
yields
q
=
-
e
-
π
163
∴
1
q
=
-
e
π
163
.
formulae-sequence
𝑞
superscript
𝑒
𝜋
163
therefore
1
𝑞
superscript
𝑒
𝜋
163
{\displaystyle q=-e^{-\pi{\sqrt{163}}}\quad\therefore\quad{\frac{1}{q}}=-e^{%
\pi{\sqrt{163}}}.}
Now
j
(
1
+
-
163
2
)
=
(
-
640 320
)
3
,
𝑗
1
163
2
superscript
640 320
3
{\displaystyle j\left({\frac{1+{\sqrt{-163}}}{2}}\right)=\left(-640\,320\right%
)^{3},}
so,
(
-
640 320
)
3
=
-
e
π
163
+
744
+
O
(
e
-
π
163
)
.
superscript
640 320
3
superscript
𝑒
𝜋
163
744
𝑂
superscript
𝑒
𝜋
163
{\displaystyle\left(-640\,320\right)^{3}=-e^{\pi{\sqrt{163}}}+744+O\left(e^{-%
\pi{\sqrt{163}}}\right).}
Or,
e
π
163
=
640 320
3
+
744
+
O
(
e
-
π
163
)
superscript
𝑒
𝜋
163
superscript
640 320
3
744
𝑂
superscript
𝑒
𝜋
163
{\displaystyle e^{\pi{\sqrt{163}}}=640\,320^{3}+744+O\left(e^{-\pi{\sqrt{163}}%
}\right)}
where the linear term of the error is,
-
196 884
e
π
163
≈
-
196 884
640 320
3
+
744
≈
-
0.000 000 000 000 75
196 884
superscript
𝑒
𝜋
163
196 884
superscript
640 320
3
744
0.000 000 000 000 75
{\displaystyle{\frac{-196\,884}{e^{\pi{\sqrt{163}}}}}\approx{\frac{-196\,884}{%
640\,320^{3}+744}}\approx-0.000\,000\,000\,000\,75}
explaining why
e
π
163
superscript
𝑒
𝜋
163
{\displaystyle{\displaystyle e^{\pi{\sqrt{163}}}}}
is within approximately the above of being an integer.
Pi formulas
The Chudnovsky brothers found in 1987 that
1
π
=
12
640 320
3
2
∑
k
=
0
∞
(
6
k
)
!
(
163
⋅
3 344 418
k
+
13 591 409
)
(
3
k
)
!
(
k
!
)
3
(
-
640 320
)
3
k
,
1
𝜋
12
superscript
640 320
3
2
superscript
subscript
𝑘
0
6
𝑘
⋅
163
3 344 418
𝑘
13 591 409
3
𝑘
superscript
𝑘
3
superscript
640 320
3
𝑘
{\displaystyle{\frac{1}{\pi}}={\frac{12}{640\,320^{\frac{3}{2}}}}\sum_{k=0}^{%
\infty}{\frac{(6k)!(163\cdot 3\,344\,418k+13\,591\,409)}{(3k)!(k!)^{3}(-640\,3%
20)^{3k}}},}
a proof of which uses the fact that
j
(
1
+
-
163
2
)
=
-
640 320
3
.
𝑗
1
163
2
superscript
640 320
3
{\displaystyle j\left({\frac{1+{\sqrt{-163}}}{2}}\right)=-640\,320^{3}.}
For similar formulas, see the Ramanujan–Sato series .
Other Heegner numbers
For the four largest Heegner numbers, the approximations one obtains[9] are as follows.
e
π
19
≈
000 096
3
+
744
-
0.22
e
π
43
≈
000 960
3
+
744
-
0.000 22
e
π
67
≈
005 280
3
+
744
-
0.000 0013
e
π
163
≈
640 320
3
+
744
-
0.000 000 000 000 75
superscript
𝑒
𝜋
19
absent
superscript
000 096
3
744
0.22
superscript
𝑒
𝜋
43
absent
superscript
000 960
3
744
0.000 22
superscript
𝑒
𝜋
67
absent
superscript
005 280
3
744
0.000 0013
superscript
𝑒
𝜋
163
absent
superscript
640 320
3
744
0.000 000 000 000 75
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{19}}}&\displaystyle%
\approx{\color[rgb]{1,1,1}000\,0}96^{3}+744-0.22\\
\displaystyle e^{\pi{\sqrt{43}}}&\displaystyle\approx{\color[rgb]{1,1,1}000\,}%
960^{3}+744-0.000\,22\\
\displaystyle e^{\pi{\sqrt{67}}}&\displaystyle\approx{\color[rgb]{1,1,1}00}5\,%
280^{3}+744-0.000\,0013\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle\approx 640\,320^{3}+744-0.000%
\,000\,000\,000\,75\end{aligned}}}
Alternatively,[10]
e
π
19
≈
12
3
(
3
2
-
1
)
3
00
+
744
-
0.22
e
π
43
≈
12
3
(
9
2
-
1
)
3
00
+
744
-
0.000 22
e
π
67
≈
12
3
(
21
2
-
1
)
3
0
+
744
-
0.000 0013
e
π
163
≈
12
3
(
231
2
-
1
)
3
+
744
-
0.000 000 000 000 75
superscript
𝑒
𝜋
19
absent
superscript
12
3
superscript
superscript
3
2
1
3
00
744
0.22
superscript
𝑒
𝜋
43
absent
superscript
12
3
superscript
superscript
9
2
1
3
00
744
0.000 22
superscript
𝑒
𝜋
67
absent
superscript
12
3
superscript
superscript
21
2
1
3
0
744
0.000 0013
superscript
𝑒
𝜋
163
absent
superscript
12
3
superscript
superscript
231
2
1
3
744
0.000 000 000 000 75
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{19}}}&\displaystyle%
\approx 12^{3}\left(3^{2}-1\right)^{3}{\color[rgb]{1,1,1}00}+744-0.22\\
\displaystyle e^{\pi{\sqrt{43}}}&\displaystyle\approx 12^{3}\left(9^{2}-1%
\right)^{3}{\color[rgb]{1,1,1}00}+744-0.000\,22\\
\displaystyle e^{\pi{\sqrt{67}}}&\displaystyle\approx 12^{3}\left(21^{2}-1%
\right)^{3}{\color[rgb]{1,1,1}0}+744-0.000\,0013\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle\approx 12^{3}\left(231^{2}-1%
\right)^{3}+744-0.000\,000\,000\,000\,75\end{aligned}}}
where the reason for the squares is due to certain Eisenstein series . For Heegner numbers
d
<
19
𝑑
19
{\displaystyle{\displaystyle d<19}}
, one does not obtain an almost integer; even
d
=
19
𝑑
19
{\displaystyle{\displaystyle d=19}}
is not noteworthy.[11] The integer j -invariants are highly factorisable, which follows from the form
12
3
(
n
2
-
1
)
3
=
(
2
2
⋅
3
⋅
(
n
-
1
)
⋅
(
n
+
1
)
)
3
,
superscript
12
3
superscript
superscript
𝑛
2
1
3
superscript
⋅
superscript
2
2
3
𝑛
1
𝑛
1
3
{\displaystyle 12^{3}\left(n^{2}-1\right)^{3}=\left(2^{2}\cdot 3\cdot(n-1)%
\cdot(n+1)\right)^{3},}
and factor as,
j
(
1
+
-
19
2
)
=
000 0
-
96
3
=
-
(
2
5
⋅
3
)
3
j
(
1
+
-
43
2
)
=
000
-
960
3
=
-
(
2
6
⋅
3
⋅
5
)
3
j
(
1
+
-
67
2
)
=
00
-
5 280
3
=
-
(
2
5
⋅
3
⋅
5
⋅
11
)
3
j
(
1
+
-
163
2
)
=
-
640 320
3
=
-
(
2
6
⋅
3
⋅
5
⋅
23
⋅
29
)
3
.
𝑗
1
19
2
absent
000 0
superscript
96
3
superscript
⋅
superscript
2
5
3
3
𝑗
1
43
2
absent
000
superscript
960
3
superscript
⋅
superscript
2
6
3
5
3
𝑗
1
67
2
absent
00
superscript
5 280
3
superscript
⋅
superscript
2
5
3
5
11
3
𝑗
1
163
2
absent
superscript
640 320
3
superscript
⋅
superscript
2
6
3
5
23
29
3
{\displaystyle{\begin{aligned} \displaystyle j\left({\frac{1+{\sqrt{-19}}}{2}}%
\right)&\displaystyle={\color[rgb]{1,1,1}000\,0}-96^{3}=-\left(2^{5}\cdot 3%
\right)^{3}\\
\displaystyle j\left({\frac{1+{\sqrt{-43}}}{2}}\right)&\displaystyle={\color[%
rgb]{1,1,1}000\,}-960^{3}=-\left(2^{6}\cdot 3\cdot 5\right)^{3}\\
\displaystyle j\left({\frac{1+{\sqrt{-67}}}{2}}\right)&\displaystyle={\color[%
rgb]{1,1,1}00}-5\,280^{3}=-\left(2^{5}\cdot 3\cdot 5\cdot 11\right)^{3}\\
\displaystyle j\left({\frac{1+{\sqrt{-163}}}{2}}\right)&\displaystyle=-640\,32%
0^{3}=-\left(2^{6}\cdot 3\cdot 5\cdot 23\cdot 29\right)^{3}.\end{aligned}}}
These transcendental numbers , in addition to being closely approximated by integers (which are simply algebraic numbers of degree 1), can be closely approximated by algebraic numbers of degree 3,[12]
e
π
19
≈
x
24
-
24.000 31
;
x
3
-
2
x
-
2
=
0
e
π
43
≈
x
24
-
24.000 000 31
;
x
3
-
2
x
2
-
2
=
0
e
π
67
≈
x
24
-
24.000 000 0019
;
x
3
-
2
x
2
-
2
x
-
2
=
0
e
π
163
≈
x
24
-
24.000 000 000 000 0011
;
x
3
-
6
x
2
+
4
x
-
2
=
0
superscript
𝑒
𝜋
19
absent
superscript
𝑥
24
24.000 31
superscript
𝑥
3
2
𝑥
2
absent
0
superscript
𝑒
𝜋
43
absent
superscript
𝑥
24
24.000 000 31
superscript
𝑥
3
2
superscript
𝑥
2
2
absent
0
superscript
𝑒
𝜋
67
absent
superscript
𝑥
24
24.000 000 0019
superscript
𝑥
3
2
superscript
𝑥
2
2
𝑥
2
absent
0
superscript
𝑒
𝜋
163
absent
superscript
𝑥
24
24.000 000 000 000 0011
superscript
𝑥
3
6
superscript
𝑥
2
4
𝑥
2
absent
0
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{19}}}&\displaystyle%
\approx x^{24}-24.000\,31;&\displaystyle x^{3}-2x-2&\displaystyle=0\\
\displaystyle e^{\pi{\sqrt{43}}}&\displaystyle\approx x^{24}-24.000\,000\,31;&%
\displaystyle x^{3}-2x^{2}-2&\displaystyle=0\\
\displaystyle e^{\pi{\sqrt{67}}}&\displaystyle\approx x^{24}-24.000\,000\,0019%
;&\displaystyle x^{3}-2x^{2}-2x-2&\displaystyle=0\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle\approx x^{24}-24.000\,000\,000%
\,000\,0011;&\displaystyle\quad x^{3}-6x^{2}+4x-2&\displaystyle=0\end{aligned}}}
The roots of the cubics can be exactly given by quotients of the Dedekind eta function η (τ ), a modular function involving a 24th root, and which explains the 24 in the approximation. They can also be closely approximated by algebraic numbers of degree 4,[13]
e
π
19
≈
3
5
(
3
-
2
(
1
-
96
24
+
1
3
⋅
19
)
)
-
2
-
12.000 06
…
e
π
43
≈
3
5
(
9
-
2
(
1
-
960
24
+
7
3
⋅
43
)
)
-
2
-
12.000 000 061
…
e
π
67
≈
3
5
(
21
-
2
(
1
-
5 280
24
+
31
3
⋅
67
)
)
-
2
-
12.000 000 000 36
…
e
π
163
≈
3
5
(
231
-
2
(
1
-
640 320
24
+
2 413
3
⋅
163
)
)
-
2
-
12.000 000 000 000 000 21
…
superscript
𝑒
𝜋
19
absent
superscript
3
5
superscript
3
2
1
96
24
1
⋅
3
19
2
12.000 06
…
superscript
𝑒
𝜋
43
absent
superscript
3
5
superscript
9
2
1
960
24
7
⋅
3
43
2
12.000 000 061
…
superscript
𝑒
𝜋
67
absent
superscript
3
5
superscript
21
2
1
5 280
24
31
⋅
3
67
2
12.000 000 000 36
…
superscript
𝑒
𝜋
163
absent
superscript
3
5
superscript
231
2
1
640 320
24
2 413
⋅
3
163
2
12.000 000 000 000 000 21
…
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{19}}}&\displaystyle%
\approx 3^{5}\left(3-{\sqrt{2\left(1-{\tfrac{96}{24}}+1{\sqrt{3\cdot 19}}%
\right)}}\right)^{-2}-12.000\,06\dots\\
\displaystyle e^{\pi{\sqrt{43}}}&\displaystyle\approx 3^{5}\left(9-{\sqrt{2%
\left(1-{\tfrac{960}{24}}+7{\sqrt{3\cdot 43}}\right)}}\right)^{-2}-12.000\,000%
\,061\dots\\
\displaystyle e^{\pi{\sqrt{67}}}&\displaystyle\approx 3^{5}\left(21-{\sqrt{2%
\left(1-{\tfrac{5\,280}{24}}+31{\sqrt{3\cdot 67}}\right)}}\right)^{-2}-12.000%
\,000\,000\,36\dots\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle\approx 3^{5}\left(231-{\sqrt{2%
\left(1-{\tfrac{640\,320}{24}}+2\,413{\sqrt{3\cdot 163}}\right)}}\right)^{-2}-%
12.000\,000\,000\,000\,000\,21\dots\end{aligned}}}
If
x
𝑥
{\displaystyle{\displaystyle x}}
denotes the expression within the parenthesis (e.g.
x
=
3
-
2
(
1
-
96
24
+
1
3
⋅
19
)
𝑥
3
2
1
96
24
1
⋅
3
19
{\displaystyle{\displaystyle x=3-{\sqrt{2\left(1-{\tfrac{96}{24}}+1{\sqrt{3%
\cdot 19}}\right)}}}}
), it satisfies respectively the quartic equations
x
4
-
004
⋅
3
x
3
+
000 0
2
3
(
96
+
3
)
x
2
-
000 000
2
3
⋅
3
(
96
-
6
)
x
-
3
=
0
x
4
-
004
⋅
9
x
3
+
000
2
3
(
960
+
3
)
x
2
-
000 00
2
3
⋅
9
(
960
-
6
)
x
-
3
=
0
x
4
-
04
⋅
21
x
3
+
00
2
3
(
5 280
+
3
)
x
2
-
000
2
3
⋅
21
(
5 280
-
6
)
x
-
3
=
0
x
4
-
4
⋅
231
x
3
+
2
3
(
640 320
+
3
)
x
2
-
2
3
⋅
231
(
640 320
-
6
)
x
-
3
=
0
superscript
𝑥
4
⋅
004
3
superscript
𝑥
3
000 0
2
3
96
3
superscript
𝑥
2
⋅
000 000
2
3
3
96
6
𝑥
3
absent
0
superscript
𝑥
4
⋅
004
9
superscript
𝑥
3
000
2
3
960
3
superscript
𝑥
2
⋅
000 00
2
3
9
960
6
𝑥
3
absent
0
superscript
𝑥
4
⋅
04
21
superscript
𝑥
3
00
2
3
5 280
3
superscript
𝑥
2
⋅
000
2
3
21
5 280
6
𝑥
3
absent
0
superscript
𝑥
4
⋅
4
231
superscript
𝑥
3
2
3
640 320
3
superscript
𝑥
2
⋅
2
3
231
640 320
6
𝑥
3
absent
0
{\displaystyle{\begin{aligned} \displaystyle x^{4}-{\color[rgb]{1,1,1}00}4%
\cdot 3x^{3}+{\color[rgb]{1,1,1}000\,0}{\tfrac{2}{3}}(96+3)x^{2}-{\color[rgb]{%
1,1,1}000\,000}{\tfrac{2}{3}}\cdot 3(96-6)x-3&\displaystyle=0\\
\displaystyle x^{4}-{\color[rgb]{1,1,1}00}4\cdot 9x^{3}+{\color[rgb]{1,1,1}000%
\,}{\tfrac{2}{3}}(960+3)x^{2}-{\color[rgb]{1,1,1}000\,00}{\tfrac{2}{3}}\cdot 9%
(960-6)x-3&\displaystyle=0\\
\displaystyle x^{4}-{\color[rgb]{1,1,1}0}4\cdot 21x^{3}+{\color[rgb]{1,1,1}00}%
{\tfrac{2}{3}}(5\,280+3)x^{2}-{\color[rgb]{1,1,1}000}{\tfrac{2}{3}}\cdot 21(5%
\,280-6)x-3&\displaystyle=0\\
\displaystyle x^{4}-4\cdot 231x^{3}+{\tfrac{2}{3}}(640\,320+3)x^{2}-{\tfrac{2}%
{3}}\cdot 231(640\,320-6)x-3&\displaystyle=0\\
\end{aligned}}}
Note the reappearance of the integers
n
=
3
,
9
,
21
,
231
𝑛
3
9
21
231
{\displaystyle{\displaystyle n=3,9,21,231}}
as well as the fact that
2
6
⋅
3
(
-
(
1
-
96
24
)
2
+
1
2
⋅
3
⋅
19
)
=
96
2
2
6
⋅
3
(
-
(
1
-
960
24
)
2
+
7
2
⋅
3
⋅
43
)
=
960
2
2
6
⋅
3
(
-
(
1
-
5 280
24
)
2
+
31
2
⋅
3
⋅
67
)
=
5 280
2
2
6
⋅
3
(
-
(
1
-
640 320
24
)
2
+
2413
2
⋅
3
⋅
163
)
=
640 320
2
⋅
superscript
2
6
3
superscript
1
96
24
2
⋅
superscript
1
2
3
19
absent
superscript
96
2
⋅
superscript
2
6
3
superscript
1
960
24
2
⋅
superscript
7
2
3
43
absent
superscript
960
2
⋅
superscript
2
6
3
superscript
1
5 280
24
2
⋅
superscript
31
2
3
67
absent
superscript
5 280
2
⋅
superscript
2
6
3
superscript
1
640 320
24
2
⋅
superscript
2413
2
3
163
absent
superscript
640 320
2
{\displaystyle{\begin{aligned} \displaystyle 2^{6}\cdot 3\left(-\left(1-{%
\tfrac{96}{24}}\right)^{2}+1^{2}\cdot 3\cdot 19\right)&\displaystyle=96^{2}\\
\displaystyle 2^{6}\cdot 3\left(-\left(1-{\tfrac{960}{24}}\right)^{2}+7^{2}%
\cdot 3\cdot 43\right)&\displaystyle=960^{2}\\
\displaystyle 2^{6}\cdot 3\left(-\left(1-{\tfrac{5\,280}{24}}\right)^{2}+31^{2%
}\cdot 3\cdot 67\right)&\displaystyle=5\,280^{2}\\
\displaystyle 2^{6}\cdot 3\left(-\left(1-{\tfrac{640\,320}{24}}\right)^{2}+241%
3^{2}\cdot 3\cdot 163\right)&\displaystyle=640\,320^{2}\end{aligned}}}
which, with the appropriate fractional power, are precisely the j -invariants.
Similarly for algebraic numbers of degree 6,
e
π
19
≈
(
5
x
)
3
-
6.000 010
…
e
π
43
≈
(
5
x
)
3
-
6.000 000 010
…
e
π
67
≈
(
5
x
)
3
-
6.000 000 000 061
…
e
π
163
≈
(
5
x
)
3
-
6.000 000 000 000 000 034
…
superscript
𝑒
𝜋
19
absent
superscript
5
𝑥
3
6.000 010
…
superscript
𝑒
𝜋
43
absent
superscript
5
𝑥
3
6.000 000 010
…
superscript
𝑒
𝜋
67
absent
superscript
5
𝑥
3
6.000 000 000 061
…
superscript
𝑒
𝜋
163
absent
superscript
5
𝑥
3
6.000 000 000 000 000 034
…
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{19}}}&\displaystyle%
\approx\left(5x\right)^{3}-6.000\,010\dots\\
\displaystyle e^{\pi{\sqrt{43}}}&\displaystyle\approx\left(5x\right)^{3}-6.000%
\,000\,010\dots\\
\displaystyle e^{\pi{\sqrt{67}}}&\displaystyle\approx\left(5x\right)^{3}-6.000%
\,000\,000\,061\dots\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle\approx\left(5x\right)^{3}-6.00%
0\,000\,000\,000\,000\,034\dots\end{aligned}}}
where the x s are given respectively by the appropriate root of the sextic equations ,
5
x
6
-
000 096
x
5
-
10
x
3
+
1
=
0
5
x
6
-
000 960
x
5
-
10
x
3
+
1
=
0
5
x
6
-
005 280
x
5
-
10
x
3
+
1
=
0
5
x
6
-
640 320
x
5
-
10
x
3
+
1
=
0
5
superscript
𝑥
6
000 096
superscript
𝑥
5
10
superscript
𝑥
3
1
absent
0
5
superscript
𝑥
6
000 960
superscript
𝑥
5
10
superscript
𝑥
3
1
absent
0
5
superscript
𝑥
6
005 280
superscript
𝑥
5
10
superscript
𝑥
3
1
absent
0
5
superscript
𝑥
6
640 320
superscript
𝑥
5
10
superscript
𝑥
3
1
absent
0
{\displaystyle{\begin{aligned} \displaystyle 5x^{6}-{\color[rgb]{1,1,1}000\,0}%
96x^{5}-10x^{3}+1&\displaystyle=0\\
\displaystyle 5x^{6}-{\color[rgb]{1,1,1}000\,}960x^{5}-10x^{3}+1&\displaystyle%
=0\\
\displaystyle 5x^{6}-{\color[rgb]{1,1,1}00}5\,280x^{5}-10x^{3}+1&\displaystyle%
=0\\
\displaystyle 5x^{6}-640\,320x^{5}-10x^{3}+1&\displaystyle=0\end{aligned}}}
with the j -invariants appearing again. These sextics are not only algebraic, they are also solvable in radicals as they factor into two cubics over the extension
ℚ
5
ℚ
5
{\displaystyle{\displaystyle\mathbb{Q}{\sqrt{5}}}}
(with the first factoring further into two quadratics ). These algebraic approximations can be exactly expressed in terms of Dedekind eta quotients. As an example, let
τ
=
1
+
-
163
2
𝜏
1
163
2
{\displaystyle{\displaystyle\textstyle\tau={\frac{1+{\sqrt{-163}}}{2}}}}
, then,
e
π
163
=
(
e
π
i
24
η
(
τ
)
η
(
2
τ
)
)
24
-
24.000 000 000 000 001 05
…
e
π
163
=
(
e
π
i
12
η
(
τ
)
η
(
3
τ
)
)
12
-
12.000 000 000 000 000 21
…
e
π
163
=
(
e
π
i
6
η
(
τ
)
η
(
5
τ
)
)
6
-
6.000 000 000 000 000 034
…
superscript
𝑒
𝜋
163
absent
superscript
superscript
𝑒
𝜋
𝑖
24
𝜂
𝜏
𝜂
2
𝜏
24
24.000 000 000 000 001 05
…
superscript
𝑒
𝜋
163
absent
superscript
superscript
𝑒
𝜋
𝑖
12
𝜂
𝜏
𝜂
3
𝜏
12
12.000 000 000 000 000 21
…
superscript
𝑒
𝜋
163
absent
superscript
superscript
𝑒
𝜋
𝑖
6
𝜂
𝜏
𝜂
5
𝜏
6
6.000 000 000 000 000 034
…
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{163}}}&\displaystyle%
=\left({\frac{e^{\frac{\pi i}{24}}\eta(\tau)}{\eta(2\tau)}}\right)^{24}-24.000%
\,000\,000\,000\,001\,05\dots\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle=\left({\frac{e^{\frac{\pi i}{1%
2}}\eta(\tau)}{\eta(3\tau)}}\right)^{12}-12.000\,000\,000\,000\,000\,21\dots\\
\displaystyle e^{\pi{\sqrt{163}}}&\displaystyle=\left({\frac{e^{\frac{\pi i}{6%
}}\eta(\tau)}{\eta(5\tau)}}\right)^{6}-6.000\,000\,000\,000\,000\,034\dots\end%
{aligned}}}
where the eta quotients are the algebraic numbers given above.
Class 2 numbers
The three numbers 88, 148, 232, for which the imaginary quadratic field
ℚ
[
-
d
]
ℚ
delimited-[]
𝑑
{\displaystyle{\displaystyle\mathbb{Q}\left[{\sqrt{-d}}\right]}}
has class number 2, are not Heegner numbers but have certain similar properties in terms of almost integers . For instance,
e
π
88
+
8 744
≈
00 002 508 952
2
-
0.077
…
e
π
148
+
8 744
≈
00 199 148 648
2
-
0.000 97
…
e
π
232
+
8 744
≈
24 591 257 752
2
-
0.000 0078
…
superscript
𝑒
𝜋
88
8 744
absent
superscript
00 002 508 952
2
0.077
…
superscript
𝑒
𝜋
148
8 744
absent
superscript
00 199 148 648
2
0.000 97
…
superscript
𝑒
𝜋
232
8 744
absent
superscript
24 591 257 752
2
0.000 0078
…
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{88}}}+8\,744&%
\displaystyle\approx{\color[rgb]{1,1,1}00\,00}2\,508\,952^{2}-0.077\dots\\
\displaystyle e^{\pi{\sqrt{148}}}+8\,744&\displaystyle\approx{\color[rgb]{%
1,1,1}00\,}199\,148\,648^{2}-0.000\,97\dots\\
\displaystyle e^{\pi{\sqrt{232}}}+8\,744&\displaystyle\approx 24\,591\,257\,75%
2^{2}-0.000\,0078\dots\\
\end{aligned}}}
and
e
π
22
-
24
≈
00
(
6
+
4
2
)
6
+
0.000 11
…
e
π
37
+
24
≈
(
12
+
2
37
)
6
-
0.000 0014
…
e
π
58
-
24
≈
(
27
+
5
29
)
6
-
0.000 000 0011
…
superscript
𝑒
𝜋
22
24
absent
00
superscript
6
4
2
6
0.000 11
…
superscript
𝑒
𝜋
37
24
absent
superscript
12
2
37
6
0.000 0014
…
superscript
𝑒
𝜋
58
24
absent
superscript
27
5
29
6
0.000 000 0011
…
{\displaystyle{\begin{aligned} \displaystyle e^{\pi{\sqrt{22}}}-24&%
\displaystyle\approx{\color[rgb]{1,1,1}00}\left(6+4{\sqrt{2}}\right)^{6}+0.000%
\,11\dots\\
\displaystyle e^{\pi{\sqrt{37}}}+24&\displaystyle\approx\left(12+2{\sqrt{37}}%
\right)^{6}-0.000\,0014\dots\\
\displaystyle e^{\pi{\sqrt{58}}}-24&\displaystyle\approx\left(27+5{\sqrt{29}}%
\right)^{6}-0.000\,000\,0011\dots\\
\end{aligned}}}
Consecutive primes
Given an odd prime p , if one computes
k
2
mod
p
modulo
superscript
𝑘
2
𝑝
{\displaystyle{\displaystyle k^{2}\mod p}}
for
k
=
0
,
1
,
…
,
p
-
1
2
𝑘
0
1
…
𝑝
1
2
{\displaystyle{\displaystyle\textstyle k=0,1,\dots,{\frac{p-1}{2}}}}
(this is sufficient because
(
p
-
k
)
2
≡
k
2
mod
p
superscript
𝑝
𝑘
2
modulo
superscript
𝑘
2
𝑝
{\displaystyle{\displaystyle\left(p-k\right)^{2}\equiv k^{2}\mod p}}
), one gets consecutive composites, followed by consecutive primes, if and only if p is a Heegner number.[14]
For details, see "Quadratic Polynomials Producing Consecutive Distinct Primes and Class Groups of Complex Quadratic Fields" by Richard Mollin .[15]
Notes and references
^ Conway, John Horton ; Guy, Richard K. (1996). The Book of Numbers . Springer. p. 224 . ISBN 0-387-97993-X .
^ Stark, H. M. (1969), "On the gap in the theorem of Heegner ", Journal of Number Theory 1 (1): 16–27, doi :10.1016/0022-314X(69)90023-7 , Bibcode : 1969JNT.....1...16S , http://deepblue.lib.umich.edu/bitstream/2027.42/33039/1/0000425.pdf
^ Rabinovitch, Georg "Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern." Proc. Fifth Internat. Congress Math. ( Cambridge) 1, 418–421, 1913.
^ Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 88 and 144, 1983.
^ Eric W. Weisstein , Transcendental Number at MathWorld . gives
e
π
d
,
d
∈
Z
*
superscript
𝑒
𝜋
𝑑
𝑑
superscript
𝑍
{\displaystyle{\displaystyle e^{\pi{\sqrt{d}}},d\in Z^{*}}}
, based on
Nesterenko, Yu. V. "On Algebraic Independence of the Components of Solutions of a System of Linear Differential Equations." Izv. Akad. Nauk SSSR, Ser. Mat. 38, 495–512, 1974. English translation in Math. USSR 8, 501–518, 1974.
^ Ramanujan Constant – from Wolfram MathWorld
^ Barrow, John D (2002). The Constants of Nature . London: Jonathan Cape. p. 72. ISBN 0-224-06135-6 .
^ Gardner, Martin (April 1975). "Mathematical Games". Scientific American . Scientific American, Inc. 232 (4): 127. Bibcode :1975SciAm.232d.126G . doi :10.1038/scientificamerican0475-126 .
^ These can be checked by computing
e
π
d
-
744
3
3
superscript
𝑒
𝜋
𝑑
744
{\displaystyle{\sqrt[3]{e^{\pi{\sqrt{d}}}-744}}}
on a calculator, and
196 884
e
π
d
196 884
superscript
𝑒
𝜋
𝑑
{\displaystyle{\frac{196\,884}{e^{\pi{\sqrt{d}}}}}}
for the linear term of the error.
^ "More on e^(pi*SQRT(163))" .
^ The absolute deviation of a random real number (picked uniformly from [[unit interval|قالب:Closed-closed ]], say) is a uniformly distributed variable on قالب:Closed-closed , so it has absolute average deviation and median absolute deviation of 0.25, and a deviation of 0.22 is not exceptional.
^ "Pi Formulas" .
^ "Extending Ramanujan's Dedekind Eta Quotients" .
^ "Simple Complex Quadratic Fields" .
^ Mollin, R. A. (1996). "Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields" (PDF) . Acta Arithmetica . 74 : 17–30. doi :10.4064/aa-74-1-17-30 .
External links