أنف إلكتروني

كان الأطباء في العصور الوسطى يشخصون الأمراض بشم أنفاس ورائحة المرضي عندما يدخلون للكشف عليهم. لهذا يحاول العلماء تصنيع أنف الكتروني لتحديد الامراض من خلال شم الزفير أو المريض نفسه. وسيتم هذا من خلال مجسات كهروكيميائية حساسة للروائح. وهذه الأنوف الشمامة سيمكنها الكشف عن المخدرات وبقايا المتفجرات والرقابة علي جودة المأكولات والمشروبات وتوليف نكهات السجائر والعطور والشاي.
وأي رائحة عبارة عن جزيئات لها أشكال هندسية مختلفة. وبالأنف بقعتان شميتان داخل تجاويف ممراته. فعندما يقع جزيء الرائحة فوق مستقبلات الروائح بالبقعة الشمية فيمكن التعرف عليها. ويحاول العلماء تقليد هذه البقعة الشمية الأنفية بوضع قرص مستنشق في ميكرفون سماعة التليفون حيث يتصل المريض عبره بكومبيوتر خاص تصله رائحة زفير المتحدث . فيتعرف عليها ويحدد مرضه فورا عن طريق وضع كروت ذكية أشبه بتذاكر المترو . وسيكون بعيادات الأطباء أجهزة شمامة تشم أنفاس المرضي وتحدد هوية أمراضهم بدقة وفي ثوان .وسيباع هذه الشمامات التشخيصية في أشكال كومبيوترات جيب يمكن للمريض التعرف علي أمراضه وتطورها أولا بأول.وهذه الشمامات سو ف تستخدم قر يبا في تحليل البول والدم والسكروالتعرف علي الامراض المعدية من خلال روائح البكتريا الممرضة. وسوف يوجد ماسح عطري Aroma scan))ِ يتعرف علي أي خلل أو حدوث متغيرات بالجسم في ثوان. والمعروف أن بعض الأمراض الكبدية تفرز روائح مميزة. وستتصل هذه الشمامات الالكترونية بكومبيوترات بها خرائط جزيئية لروائح الأمراض والروائح العطرية.
وفي مجال الأمن سوف توضع هذه الأنوف الشمامة علي الأبواب لتسجل رائحة الأشخاص والتعرف عليهم ولاتفتح الا للأشخاص الذين رائحتهم مبرمجة فيها ومقبولة ولهم الاذن في دخول الأماكن الحساسة.وستصبح البصمة الشمية لروائح الأشخاص أحد الأدلة الجنائية المعمول بها في البحث الجنائي وأمام المحاكم أسوة بما هو متبع مع بصمات الأصابع والعين والأذن والدنا بالدم.
Other techniques to analyze odors
In all industries, odor assessment is usually performed by human sensory analysis, by chemosensors, or by gas chromatography. The latter technique gives information about volatile organic compounds but the correlation between analytical results and mean odor perception is not direct due to potential interactions between several odorous components.
In the Wasp Hound odor detector, the mechanical element is a video camera and the biological element is five parasitic wasps who have been conditioned to swarm in response to the presence of a specific chemical.[2]
التاريخ
شاع العالم ألكساندر جراهام بيل فكرة أنه كان من الصعب قياس الرائحة ،[3] وفي عام 1914 قال ما يلي:
ولكن حتى تتمكن من قياس تشابهها والاختلافات ، لا يمكن أن يكون لديك علم الرائحة. إذا كنت طموحًا في العثور على علم جديد ، فقم بقياس الرائحة. ألكساندر جراهام بيل » – 1914[4]
في العقود التي تلت تقديم بيل لهذه الملاحظة ، لم يتحقق أي علم للرائحة ، ولم يتحقق تقدم حقيقي إلا في الخمسينيات وما بعدها. [3]
Working principle
The electronic nose was developed in order to mimic human olfaction that functions as a non-separative mechanism: i.e. an odor / flavor is perceived as a global fingerprint.[5] Essentially the instrument consists of head space sampling, a chemical sensor array, and pattern recognition modules, to generate signal patterns that are used for characterizing odors.[6]
Electronic noses include three major parts: a sample delivery system, a detection system, a computing system.[7]
The sample delivery system enables the generation of the headspace (volatile compounds) of a sample, which is the fraction analyzed. The system then injects this headspace into the detection system of the electronic nose. The sample delivery system is essential to guarantee constant operating conditions.[6]
The detection system, which consists of a sensor set, is the "reactive" part of the instrument. When in contact with volatile compounds, the sensors react, which means they experience a change of electrical properties.[6]
In most electronic noses, each sensor is sensitive to all volatile molecules but each in their specific way. However, in bio-electronic noses, receptor proteins which respond to specific odor molecules are used. Most electronic noses use chemical sensor arrays that react to volatile compounds on contact: the adsorption of volatile compounds on the sensor surface causes a physical change of the sensor.[8] A specific response is recorded by the electronic interface transforming the signal into a digital value. Recorded data are then computed based on statistical models.[9]
Bio-electronic noses use olfactory receptors – proteins cloned from biological organisms, e.g. humans, that bind to specific odor molecules. One group has developed a bio-electronic nose that mimics the signaling systems used by the human nose to perceive odors at a very high sensitivity: femtomolar concentrations.[10]
The more commonly used sensors for electronic noses include
- metal–oxide–semiconductor (MOS) devices – metal–oxide–semiconductor sensors contain a metal oxide coating with an electrical resistance that changes in the presence of a target gas. The presence of the target gas can be inferred by measuring the change in the resistance of the metal oxide layer over time.[11]
- conducting polymers – organic polymers that conduct electricity.[12]
- polymer composites – similar in use to conducting polymers but formulated of non-conducting polymers with the addition of conducting material such as carbon black.
- quartz crystal microbalance (QCM) – a way of measuring mass per unit area by measuring the change in frequency of a quartz crystal resonator. This can be stored in a database and used for future reference.
- surface acoustic wave (SAW) – a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon.[13]
- Mass spectrometers can be miniaturised to form general purpose gas analysis device.[14]
Some devices combine multiple sensor types in a single device, for example polymer coated QCMs. The independent information leads to vastly more sensitive and efficient devices.[15] Studies of airflow around canine noses, and tests on lifesize models have indicated that a cyclic 'sniffing action' similar to that of a real dog is beneficial in terms of improved range and speed of response[16]
In recent years, other types of electronic noses have been developed that utilize mass spectrometry or ultra-fast gas chromatography as a detection system.[9]
The computing system works to combine the responses of all of the sensors, which represents the input for the data treatment. This part of the instrument performs global fingerprint analysis and provides results and representations that can be easily interpreted. Moreover, the electronic nose results can be correlated to those obtained from other techniques (sensory panel, GC, GC/MS). Many of the data interpretation systems are used for the analysis of results. These systems include artificial neural network (ANN),[17] fuzzy logic, chemometrics methods,[18] pattern recognition modules, etc.[19] Artificial intelligence, included artificial neural network (ANN), is a key technique for the environmental odour management.[20]
Performing an analysis
As a first step, an electronic nose needs to be trained with qualified samples so as to build a database of reference. Then the instrument can recognize new samples by comparing a volatile compound's fingerprint to those contained in its database. Thus they can perform qualitative or quantitative analysis. This however may also cause a problem as many odors are made up of multiple different molecules, which may be wrongly interpreted by the device as it will register them as different compounds, resulting in incorrect or inaccurate results depending on the primary function of a nose.[21] The example of e-nose dataset is also available.[22] This dataset can be used as a reference for e-nose signal processing, notably for meat quality studies. The two main objectives of this dataset are multiclass beef classification and microbial population prediction by regression.
Applications

Electronic nose instruments are used by research and development laboratories, quality control laboratories and process & production departments for various purposes:
In quality control laboratories
- Conformity of raw materials, intermediate and final products
- Batch to batch consistency
- Detection of contamination, spoilage, adulteration[23][24]
- Origin or vendor selection
- Monitoring of storage conditions[25]
- Meat quality monitoring.[26][27]
In process and production departments
- Managing raw material variability
- Comparison with a reference product
- Measurement and comparison of the effects of manufacturing process on products
- Following-up cleaning in place process efficiency
- Scale-up monitoring
- Cleaning in place monitoring.
In product development phases
- Sensory profiling and comparison of various formulations or recipes
- Benchmarking of competitive products
- Evaluation of the impact of a change of process or ingredient on sensory features.
Possible and future applications in the fields of health and security
- The detection of dangerous and harmful bacteria, such as software that has been specifically developed to recognise the smell of the MRSA (Methicillin-resistant Staphylococcus aureus).[28] It is also able to recognise methicillinsusceptible S. aureus (MSSA) among many other substances. It has been theorised that if carefully placed in hospital ventilation systems, it could detect and therefore prevent contamination of other patients or equipment by many highly contagious pathogens.
- The detection of lung cancer or other medical conditions by detecting the VOC's (volatile organic compounds) that indicate the medical condition.[29][30][31]
- The detection of viral and bacterial infections in COPD Exacerbations.[32]
- The quality control of food products as it could be conveniently placed in food packaging to clearly indicate when food has started to rot or used in the field to detect bacterial or insect contamination.[33]
- Nasal implants could warn of the presence of natural gas, for those who had anosmia or a weak sense of smell.
- The Brain Mapping Foundation used the electronic nose to detect brain cancer cells.[34][35][36][37][38][39]
Possible and future applications in the field of crime prevention and security
- The ability of the electronic nose to detect odorless smells makes it ideal for use in the police force, such as the ability to detect bomb odors despite other airborne odors capable of confusing police dogs.
- It may also be used as a drug detection method in airports. Through careful placement of several or more electronic noses and effective computer systems, one could triangulate the location of drugs to within a few metres of their location in less than a few seconds.
- Demonstration systems that detect the vapours given off by explosives exist, but are currently some way behind a well trained sniffer dog.
In environmental monitoring
- For identification of volatile organic compounds in air, water and soil samples.[40][41]
- For environmental protection.[42][43]
Various application notes describe analysis in areas such as flavor and fragrance, food and beverage, packaging, pharmaceutical, cosmetic and perfumes, and chemical companies. More recently they can also address public concerns in terms of olfactive nuisance monitoring with networks of on-field devices.[44][45] Since emission rates on a site can be extremely variable for some sources, the electronic nose can provide a tool to track fluctuations and trends and assess the situation in real time.[46] It improves understanding of critical sources, leading to pro-active odor management. Real time modeling will present the current situation, allowing the operator to understand which periods and conditions are putting the facility at risk. Also, existing commercial systems[47] can be programmed to have active alerts based on set points (odor concentration modeled at receptors/alert points or odor concentration at a nose/source) to initiate appropriate actions.
انظر أيضاً
- Chemical field-effect transistor
- Chemiresistor
- Electronic skin
- Electronic tongue
- Fluctuation-enhanced sensing
- Machine olfaction
- Olfactometer
- شم آلي
- [[لسان إلكتروني]
الهامش
- ^ Haddad et al., doi:10.1371/journal.pcbi.1000740
- ^ "Wasp Hound". Science Central. Archived from the original on 16 July 2011. Retrieved 23 February 2011.
- ^ أ ب "Archived copy" (PDF). Archived from the original (PDF) on 2012-03-31. Retrieved 2011-08-22.
{{cite web}}
: CS1 maint: archived copy as title (link)[استشهاد ناقص] - ^ Wise, P. M.; Olsson, MJ; Cain, WS (2000). "Quantification of Odor Quality". Chemical Senses. 25 (4): 429–43. doi:10.1093/chemse/25.4.429. PMID 10944507.
- ^ Mendez, Maria Luz Rodriguez (2016-02-19). Electronic Noses and Tongues in Food Science (in الإنجليزية). Academic Press. ISBN 978-0-12-800402-9.
- ^ أ ب ت Gardner, J.; Yinon, Jehuda (2004-08-17). Electronic Noses and Sensors for the Detection of Explosives (in الإنجليزية). Springer Science & Business Media. ISBN 978-1-4020-2318-7.
- ^ Karami, H., Rasekh, M. & Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. Food Measure 14, 2600–2610 (2020). https://doi.org/10.1007/s11694-020-00506-0
- ^ "Chemical Sensing". sensigent.com. 11 March 2018. Retrieved 26 July 2023.
- ^ أ ب "Sensory expert and Analytical Instruments". alpha-mos.com. Archived from the original on 2008-10-23.
- ^ Jin, Hye Jun; Lee, Sang Hun; Kim, Tae Hyun; Park, Juhun; Song, Hyun Seok; Park, Tai Hyun; Hong, Seunghun (2012). "Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction". Biosensors and Bioelectronics. 35 (1): 335–41. doi:10.1016/j.bios.2012.03.012. PMID 22475887.
- ^ Nazemi, Haleh; Joseph, Aashish; Park, Jaewoo; Emadi, Arezoo (2019). "Advanced Micro- and Nano-Gas Sensor Technology: A Review". Sensors. 19 (6): 1285. Bibcode:2019Senso..19.1285N. doi:10.3390/s19061285. PMC 6470538. PMID 30875734.
- ^ Summary of electronic nose technologies – Andrew Horsfield[التحقق مطلوب]
- ^ Röck, Frank; Barsan, Nicolae; Weimar, Udo (2008). "Electronic Nose: Current Status and Future Trends". Chemical Reviews. 108 (2): 705–25. doi:10.1021/cr068121q. PMID 18205411.
- ^ "Status and Future Trends of the Miniaturization of Mass Spectrometry" (PDF).
- ^ Paul Wali, R.; Wilkinson, Paul R.; Eaimkhong, Sarayoot Paul; Hernando-Garcia, Jorge; Sánchez-Rojas, Jose Luis; Ababneh, Abdallah; Gimzewski, James K. (2010-06-03). "Fourier transform mechanical spectroscopy of micro-fabricated electromechanical resonators: A novel, information-rich pulse method for sensor applications" (PDF). Sensors and Actuators B: Chemical. Vol. 147, no. 2. pp. 508–516. doi:10.1016/j.snb.2010.03.086. ISSN 0925-4005. Archived from the original on 2012-07-14. Retrieved 2021-02-14.
- ^ Staymates, Matthew E.; MacCrehan, William A.; Staymates, Jessica L.; Kunz, Roderick R.; Mendum, Thomas; Ong, Ta-Hsuan; Geurtsen, Geoffrey; Gillen, Greg J.; Craven, Brent A. (1 December 2016). "Biomimetic Sniffing Improves the Detection Performance of a 3D Printed Nose of a Dog and a Commercial Trace Vapor Detector". Scientific Reports. 6 (1): 36876. Bibcode:2016NatSR...636876S. doi:10.1038/srep36876. PMC 5131614. PMID 27906156.
- ^ Skarysz, Angelika; Alkhalifah, Yaser; Darnley, Kareen; Eddleston, Michael; Hu, Yang; McLaren, Duncan B.; Nailon, William H.; Salman, Dahlia; Sykora, Martin; Thomas, C L Paul; Soltoggio, Andrea (2018). "Convolutional neural networks for automated targeted analysis of raw gas chromatography-mass spectrometry data". 2018 International Joint Conference on Neural Networks (IJCNN). pp. 1–8. doi:10.1109/IJCNN.2018.8489539. ISBN 978-1-5090-6014-6. S2CID 52989098.
- ^ Rasekh, Mansour; Karami, Hamed (2021-03-23). "Application of electronic nose with chemometrics methods to the detection of juices fraud". Journal of Food Processing and Preservation. Wiley. 45 (5). doi:10.1111/jfpp.15432. ISSN 0145-8892. S2CID 233676947.
- ^ "What the nose knows". The Economist. 9 March 2006. Archived from the original on 31 May 2011.
- ^ Zarra, Tiziano; Galang, Mark Gino; Ballesteros, Florencio; Belgiorno, Vincenzo; Naddeo, Vincenzo (December 2019). "Environmental odour management by artificial neural network – A review". Environment International. 133 (Pt B): 105189. doi:10.1016/j.envint.2019.105189. PMID 31675561.
- ^ Summary of electronic nose technologies[التحقق مطلوب]
- ^ Wijaya, D.R.; Sarno, Riyanarto; Zulaika, Enny (2018). "Electronic nose dataset for beef quality monitoring in uncontrolled ambient conditions". Data in Brief. 21: 2414–2420. Bibcode:2018DIB....21.2414W. doi:10.1016/j.dib.2018.11.091. PMC 6282642. PMID 30547068.
- ^ Karami, H, Rasekh, M, Mirzaee-Ghaleh, E. Application of the E-nose machine system to detect adulterations in mixed edible oils using chemometrics methods. J Food Process Preserv. 2020; 44:e14696. https://doi.org/10.1111/jfpp.14696
- ^ Rasekh, M, Karami, H. Application of electronic nose with chemometrics methods to the detection of juices fraud. J Food Process Preserv. 2021; 45:e15432. https://doi.org/10.1111/jfpp.15432
- ^ Karami, H., Rasekh, M., & Mirzaee- Ghaleh, E. (2020). Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemometrics and Intelligent Laboratory Systems, 206, 104165. https://doi.org/10.1016/j.chemolab.2020.104165
- ^ Wijaya, D.R.; Sarno, Riyanarto; Zulaika, Enny (2017). "Development of mobile electronic nose for beef quality monitoring". Procedia Computer Science. 124: 728–735. doi:10.1016/j.procs.2017.12.211.
- ^ Karunathilaka, Sanjeewa R.; Ellsworth, Zachary; Yakes, Betsy Jean (September 2021). "Detection of decomposition in mahi-mahi, croaker, red snapper, and weakfish using an electronic-nose sensor and chemometric modeling" (PDF). Journal of Food Science. United States: Wiley-Blackwell. 86 (9): 4148–4158. doi:10.1111/1750-3841.15878. ISSN 1750-3841. PMID 34402528. S2CID 237149759.
- ^ Dutta, Ritaban; Dutta, Ritabrata (2006). "Intelligent Bayes Classifier (IBC) for ENT infection classification in hospital environment". BioMedical Engineering OnLine. 5: 65. doi:10.1186/1475-925X-5-65. PMC 1764885. PMID 17176476.
- ^ Dragonieri, Silvano; Van Der Schee, Marc P.; Massaro, Tommaso; Schiavulli, Nunzia; Brinkman, Paul; Pinca, Armando; Carratú, Pierluigi; Spanevello, Antonio; Resta, Onofrio (2012). "An electronic nose distinguishes exhaled breath of patients with Malignant Pleural Mesothelioma from controls". Lung Cancer. 75 (3): 326–31. doi:10.1016/j.lungcan.2011.08.009. hdl:11586/130383. PMID 21924516.
- ^ Timms, Chris; Thomas, Paul S; Yates, Deborah H (2012). "Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling". Journal of Breath Research. 6 (1): 016003. Bibcode:2012JBR.....6a6003T. doi:10.1088/1752-7155/6/1/016003. PMID 22233591. S2CID 5307745.
- ^ Bikov, Andras; Hernadi, Marton; Korosi, Beata Zita; Kunos, Laszlo; Zsamboki, Gabriella; Sutto, Zoltan; Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Losonczy, Gyorgy; Horvath, Ildiko (December 2014). "Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer". BMC Pulmonary Medicine. 14 (1): 202. doi:10.1186/1471-2466-14-202. PMC 4289562. PMID 25510554. S2CID 5908556.
- ^ van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M (16 June 2016). "Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study". Journal of Breath Research. 10 (3): 036001. Bibcode:2016JBR....10c6001V. doi:10.1088/1752-7155/10/3/036001. PMID 27310311.
- ^ Degenhardt, David C.; Greene, Jeremy K.; Khalilian, Ahmad (2012). "Temporal Dynamics and Electronic Nose Detection of Stink Bug-Induced Volatile Emissions from Cotton Bolls". Psyche: A Journal of Entomology. 2012: 1–9. doi:10.1155/2012/236762.
- ^ "NASA's Electronic Nose May Provide Neurosurgeons With A New Weapon Against Brain Cancer". sciencedaily.com. Archived from the original on 10 August 2017. Retrieved 30 April 2018.
- ^ Babak Kateb, M. A. Ryan, M. L. Homer, L. M. Lara, Yufang Yin, Kerin Higa, Mike Y.Chen; Sniffing Out Cancer Using the JPL Electronic Nose: A Novel Approach to Detection and Differentiation of Brain Cancer, NeuroImage 47(2009), T5-9
- ^ "NASA's e-nose to fight brain cancer: Study". NDTV.com. 4 May 2009. Archived from the original on 18 December 2011.
- ^ "NASA's ENose sniffs for cancer". theregister.co.uk. Archived from the original on 2017-08-10.
- ^ Ross Miller. "NASA's new e-nose can detect scent of cancerous brain cells". Engadget. AOL. Archived from the original on 2017-08-10.
- ^ Michael Cooney (30 April 2009). "NASA's electronic nose can sniff out cancer, space stench". Network World. Archived from the original on 3 July 2013.
- ^ Edward J. Staples (1 November 2006). "A Sensitive Electronic Nose". Environmental protection. Archived from the original on 2011-10-08. Retrieved 2011-08-22.
- ^ Arroyo, Patricia; Herrero, José Luis; Suárez, José Ignacio; Lozano, Jesús (2019-02-08). "Wireless Sensor Network Combined with Cloud Computing for Air Quality Monitoring". Sensors (in الإنجليزية). 19 (3): 691. Bibcode:2019Senso..19..691A. doi:10.3390/s19030691. PMC 6387342. PMID 30744013.
- ^ (19–21 May 2010) "Development of Wireless Electronic Nose for Environment Quality Classification" in 2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology.: 540–3.
- ^ Cangialosi, Federico; Bruno, Edoardo; De Santis, Gabriella (2 July 2021). "Application of Machine Learning for Fenceline Monitoring of Odor Classes and Concentrations at a Wastewater Treatment Plant" (PDF). Sensors. Basel, Switzerland: MDPI. 21 (14): 4716. Bibcode:2021Senso..21.4716C. doi:10.3390/s21144716. ISSN 1424-8220. PMC 8309642. PMID 34300455.
- ^ "Sensory expert and Analytical Instruments". alpha-mos.com. Archived from the original on 2009-05-18.
- ^ "Pima County Marks Years of Odor Management Innovation". Odotech. Archived from the original on 2010-09-18.
- ^ Odour impact assessment handbook. Naddeo, V.,, Belgiorno, V.,, Zarra, T. Chichester, West Sussex, United Kingdom. 2012-11-26. ISBN 9781118481288. OCLC 818466563.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link) - ^ "Portable Benchtop Instruments". sensigent.com. 14 March 2018. Retrieved 17 July 2023.
- Electronic Nose for MRSA bacterial detection Dr Ritaban Dutta
المصادر
- من مقالات أحمد محمد عوف .