پاور ڤي‌آر

پاور ڤي‌آر PowerVR هي قسم من إيماجينيشن تكنولوجيز (المعروفة سابقًا باسم ڤيديو لوجيك VideoLogic) التي تقوم بتطوير أجهزة وبرامج ثنائية الأبعاد و عرض ثلاثي الأبعاد ، و ترميز الڤيديو ، فك التشفير ، المرتبط بتسريع معالجة الصور و DirectX و OpenGL ES و OpenVG و OpenCL. يطور پاور ڤي‌آر PowerVR أيضًا مسرعات الذكاء الاصطناعي التي تسمى مسرع الشبكة العصبية (NNA).

تم تقديم خط إنتاج پاور ڤي‌آر PowerVR في الأصل للتنافس في سوق أجهزة الحواسيب المكتبية على مسرعات الأجهزة ثلاثية الأبعاد مع منتج ذو نسبة السعر إلى الأداء أفضل من المنتجات الحالية مثل المنتجات من 3dfx التفاعلية. أدت التغييرات السريعة في هذا السوق، ولا سيما مع إدخال OpenGL و Direct3D ، إلى الاندماج السريع. فقد قدمت پاور ڤي‌آر PowerVR إصدارات جديدة مع الإلكترونيات منخفضة الطاقةالتي استهدفت سوق الحاسب المحمول. بمرور الوقت، تطور هذا إلى سلسلة من التصميمات التي يمكن دمجها في بنى نظام على شريحة مناسبة لاستخدام الجهاز المحمول.

لا يتم تصنيع مسرعات پاور ڤي‌آر PowerVR بواسطة پاور ڤي‌آر PowerVR، ولكن بدلاً من ذلك، تم ترخيص تصميمات الدوائر المتكاملة و براءة الاختراع لشركات أخرى، مثل تكساس إنسترمنتس ، إنتل ، NEC ، بلاك بيري ، رنِساس ، سامسونگ ، STMicroelectronics ، Freescale ، آپل و NXP لأنصاف النواقل (سابقًا فليپس لأنصاف النواقل) ، وغيرها الكثير.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

تقنية

تستخدم مجموعة شرائح پاور ڤي‌آر طريقة عرض ثلاثي الأبعاد تُعرف باسم عرض مؤجل قائم على التجانب (غالبًا ما يتم اختصاره باسم TBDR) وهو عرض قائم على التجانب مقترن بطريقة الملكية الخاصة بـ پاور ڤي‌آر لإزالة السطح المخفي (HSR) وتقنية الجدولة الهرمية (HST). نظرًا لأن برنامج إنشاء المضلع يزود المثلثات لبرنامج پاور ڤي‌آر (برنامج التشغيل)، فإنه يخزنها في الذاكرة في شريط مثلث أو تنسيق مفهرس. على عكس البنى الأخرى، لا يتم تنفيذ عرض المضلع (عادةً) حتى يتم تجميع جميع معلومات المضلع لـ الإطار الحالي. علاوة على ذلك، تتأخر العمليات باهظة الثمن الخاصة بتركيب وتظليل وحدات الپكسل (أو الأجزاء)، كلما أمكن ذلك، حتى يتم تحديد السطح المرئي عند الپكسل - ومن ثم يتم تأخير العرض.

من أجل التجسيد، يتم تقسيم الشاشة إلى أقسام مستطيلة بنمط شبكة. يُعرف كل قسم بالشرائح. يرتبط بكل بلاطة قائمة بالمثلثات التي تتداخل بشكل واضح مع هذا المربع. يتم تقديم كل شريحة بدورها لإنتاج الصورة النهائية.

يتم تجسيد الشرائح باستخدام عملية مشابهة لـ تشكيل الأشعة. يتم محاكاة الأشعة عدديًا كما لو تم جمعها إلى المثلثات المرتبطة بالشرائح ويتم تجسيد الپكسل من المثلث الأقرب إلى الكاميرا. تحسب أجهزة پاور ڤي‌آر عادةً الأعماق المرتبطة بكل مضلع لصف تجانب واحد في دورة واحدة.[محل شك]

تتمتع هذه الطريقة بميزة، على عكس الأنظمة الهرمية القائمة على الاستبعاد Z الأكثر تقليدية، لا يلزم إجراء حسابات لتحديد شكل المضلع في منطقة تحجبه أشكال هندسية أخرى. كما أنه يسمح بالعرض الصحيح للمضلعات الشفافة جزئيًا، بغض النظر عن الترتيب الذي تتم معالجتها به بواسطة تطبيق إنتاج المضلع. (تم تنفيذ هذه الإمكانية فقط في السلسلة 2 بما في ذلك دريم كاست ومتغير MBX واحد. لا يتم تضمينها بشكل عام بسبب نقص دعم API وأسباب التكلفة.) والأهم من ذلك، نظرًا لأن العرض يقتصر على قطعة واحدة في كل مرة، يمكن أن تكون اللوحة بأكملها في ذاكرة سريعة على الشريحة، والتي يتم مسحها في ذاكرة الفيديو قبل معالجة اللوحة التالية. في ظل الظروف العادية، تتم زيارة كل شريحة مرة واحدة فقط لكل إطار.

پاور ڤي‌آر هي شركة رائدة في العرض المؤخر القائم على التجانب. قامت مايكروسوفت أيضًا بوضع تصور للفكرة من خلال مشروعها المهمل تاليسمان. تم شراء گيگاپكسل، وهي شركة طورت IP للرسومات ثلاثية الأبعاد المستندة إلى الشرائح، بواسطة 3dfx، والتي تم شراؤها لاحقًا بواسطة نڤيديا. لقد ثبت الآن أن نڤيديا تستخدم عرض الشرائح في بنى ماكسويل و پاسكال الصغيرة لمقدار محدود من الهندسة.[1]

بدأت آرم في تطوير بنية رئيسية أخرى قائمة على الشرائح تُعرف باسم مالي بعد استحواذها على فالانكس.

تستخدم إنتل مفهومًا مشابهًا في منتجاتها الرسومية المتكاملة. ومع ذلك، فإن طريقته، التي تسمى تجسيد النطاق، لا تؤدي بشكل كامل إزالة السطح المخفي (HSR) وتأجيل التركيب، وبالتالي تهدر معدل التعبئة وعرض النطاق الترددي للتركيب على وحدات الپكسل غير المرئية في الصورة النهائية.

أدرجت التطورات الحديثة في التخزين المؤقت الهرمي على شكل Z بشكل فعال الأفكار المستخدمة سابقًا فقط في العرض المؤخر، بما في ذلك فكرة القدرة على تقسيم المشهد إلى شرائح وإمكانية قبول أو رفض قطع المضلع بحجم الشريحة.

اليوم، تشتمل مجموعة برامج وأجهزة پاور ڤي‌آر على ASICs لـ ترميز الفيديو و فك التشفير وما يرتبط بها من معالجة الصور. كما أن لديها محاكاة افتراضية و تسريع DirectX ، OpenGL ES ، OpenVG و OpenCL.[2]تحتوي أحدث وحدات معالجة الرسومات پاور ڤي‌آر ويزارد على أجهزة

وحدة  تتبع الشعاع ذات  التابع الثابت (RTU) وتدعم التقديم المختلط.[3]


PowerVR Graphics

Series1 (NEC)

VideoLogic Apocalypse 3Dx (NEC PowerVR PCX2 chip)
NEC D62011GD (PowerVR PCX2)

The first series of PowerVR cards was mostly designed as 3D-only accelerator boards that would use the main 2D video card's memory as framebuffer over PCI. Videologic's first PowerVR PC product to market was the 3-chip Midas3, which saw very limited availability in some OEM Compaq PCs.[4][5] This card had very poor compatibility with all but the first Direct3D games, and even most SGL games did not run. However, its internal 24-bit color precision rendering was notable for the time.

The single-chip PCX1 was released in retail as the VideoLogic Apocalypse 3D[6] and featured an improved architecture with more texture memory, ensuring better game compatibility. This was followed by the further refined PCX2, which clocked 6 MHz higher, offloaded some driver work by including more chip functionality[7] and added bilinear filtering, and was released in retail on the Matrox M3D[8] and Videologic Apocalypse 3Dx cards. There was also the Videologic Apocalypse 5D Sonic, which combined the PCX2 accelerator with a Tseng ET6100 2D core and ESS Agogo sound on a single PCI board.

The PowerVR PCX cards were placed in the market as budget products and performed well in the games of their time, but weren't quite as fully featured as the 3DFX Voodoo accelerators (due to certain blending modes being unavailable, for instance). However, the PowerVR approach of rendering to the 2D card's memory meant that much higher 3D rendering resolutions could be possible in theory, especially with PowerSGL games that took full advantage of the hardware.

  • All models support DirectX 3.0 and PowerSGL, MiniGL drivers available for select games
Model Launch Fab (nm) Memory (MiB) Core clock (MHz) Memory clock (MHz) Core config1 Fillrate Memory
MOperations/s MPixels/s MTexels/s MPolygons/s Bandwidth (GB/s) Bus type Bus width (bit)
Midas3 1996 ? 2 66 66 1:1 66 66 66 0 0.242 SDR+FPM2 32+162
PCX1 1996 500 4 60 60 1:1 60 60 60 0 0.48 SDR 64
PCX2 1997 350 4 66 66 1:1 66 66 66 0 0.528 SDR 64
  • 1 Texture mapping units: render output units
  • 2 Midas3 is 3-chip (vs. single-chip PCX series) and uses a split memory architecture: 1 MB 32-bit SDRAM (240 MB/s peak bandwidth) for textures and 1 MB 16-bit FPM DRAM for geometry data (and presumably for PCI communication). PCX series has only texture memory.

Series2 (NEC)

The second generation PowerVR2 ("PowerVR Series2", chip codename "CLX2") was brought to market in the Dreamcast console between 1998 and 2001. As part of an internal competition at Sega to design the successor to the Saturn, the PowerVR2 was licensed to NEC and was chosen ahead of a rival design based on the 3dfx Voodoo 2. It was called "the Highlander Project" during development.[9] The PowerVR2 was paired with the Hitachi SH-4 in the Dreamcast, with the SH-4 as the T&L geometry engine and the PowerVR2 as the rendering engine.[10] The PowerVR2 also powered the Sega Naomi, the upgraded arcade system board counterpart of the Dreamcast.

However, the success of the Dreamcast meant that the PC variant, sold as Neon 250, appeared a year late to the market, in late 1999. The Neon 250 was nevertheless competitive with the RIVA TNT2 and Voodoo3.[11] The Neon 250 features inferior hardware specifications compared to the PowerVR2 part used in Dreamcast, such as a halved tile size, among others.

  • All models are fabricated with a 250 nm process
  • All models support DirectX 6.0
  • PMX1 supports PowerSGL 2 and includes a MiniGL driver optimized for Quake 3 Arena
Model Launch Memory (MiB) Core clock (MHz) Memory clock (MHz) Core config1 Fillrate Memory
MOperations/s MPixels/s MTexels/s MPolygons/s Bandwidth (GB/s) Bus type Bus width (bit)
CLX2[10] 1998 8 100 100 1:1 3200 3200 2
100 3
3200 2
100 3
7 4 0.8 SDR 64
PMX1 1999 32 125 125 1:1 125 125 125 0 1 SDR 64
  • 1 Texture mapping units: render output units
  • 2 Fillrate for opaque polygons.
  • 3 Fillrate for translucent polygons with hardware sort depth of 60.
  • 4 Hitachi SH-4 geometry engine calculates T&L for more than 10 million triangles per second. CLX2 rendering engine throughput is 7 million triangles per second.

Series3 (STMicro)

Hercules 3D Prophet 4000XT 64MB PCI with the KYRO chipset.
KYRO II.

In 2001, the third generation PowerVR3 STG4000 KYRO was released, manufactured by new partner STMicroelectronics. The architecture was redesigned for better game compatibility and expanded to a dual-pipeline design for more performance. The refresh STM PowerVR3 KYRO II, released later in the same year, likely had a lengthened pipeline to attain higher clock speeds[12] and was able to rival the more expensive ATI Radeon DDR and NVIDIA GeForce 2 GTS in some benchmarks of the time, despite its modest specifications on paper and lack of hardware transform and lighting (T&L), a fact that Nvidia especially tried to capitalize on in a confidential paper they sent out to reviewers.[13] As games increasingly started to include more geometry with this feature in mind, the KYRO II lost its competitiveness.

The KYRO series had a decent featureset for a budget-oriented GPU in their time, including a few Direct3D 8.1-compliant features such as 8-layer multitexturing (not 8-pass) and Environment Mapped Bump Mapping (EMBM); Full Scene Anti-Aliasing (FSAA) and Trilinear/Anisotropic filtering were also present.[14][15][16] KYRO II could also perform Dot Product (Dot3) Bump Mapping at a similar speed as GeForce 2 GTS in benchmarks.[17] Omissions included hardware T&L (an optional feature in Direct3D 7), Cube Environment Mapping and legacy 8-bit paletted texture support. While the chip supported S3TC/DXTC texture compression, only the (most commonly used) DXT1 format was supported.[18] Support for the proprietary PowerSGL API was also dropped with this series.

16-bit output quality was excellent compared to most of its competitors, thanks to rendering to its internal 32-bit tile cache and downsampling to 16-bit instead of straight use of a 16-bit framebuffer.[19] This could play a role in improving performance without losing much image quality, as memory bandwidth was not plentiful. However, due to its unique concept on the market, the architecture could sometimes exhibit flaws such as missing geometry in games, and therefore the driver had a notable amount of compatibility settings, such as switching off the internal Z-buffer. These settings could cause a negative impact on performance.

A second refresh of the KYRO was planned for 2002, the STG4800 KYRO II SE. Samples of this card were sent to reviewers but it does not appear to have been brought to market. Apart from a clockspeed boost, this refresh was announced with a "EnT&L" HW T&L software emulation, which eventually made it into the drivers for the previous KYRO cards starting with version 2.0. The STG5500 KYRO III, based upon the next-generation PowerVR4, was completed and would have included hardware T&L but was shelved due to STMicro closing its graphics division.

Model Launch Fab (nm) Memory (MiB) Core clock (MHz) Memory clock (MHz) Core config1 Fillrate Memory
MOperations/s MPixels/s MTexels/s MPolygons/s Bandwidth (GB/s) Bus type Bus width (bit)
STG4000 KYRO 2001 250 32/64 115 115 2:2 230 230 230 0 1.84 SDR 128
STG4500 KYRO II 2001 180 32/64 175 175 2:2 350 350 350 0 2.8 SDR 128
STG4800 KYRO II SE 2002 180 64 200 200 2:2 400 400 400 0 3.2 SDR 128
STG5500 KYRO III Never Released 130 64 250 250 4:4 1000 1000 1000 0 8 DDR 128

Series4 (STMicro)

PowerVR achieved great success in the mobile graphics market with its low power PowerVR MBX. MBX, and its SGX successors, are licensed by seven of the top ten semiconductor manufacturers including Intel, Texas Instruments, Samsung, NEC, NXP Semiconductors, Freescale, Renesas and Sunplus. The chips were used in many high-end cellphones including the original iPhone and iPod Touch, Nokia N95, Sony Ericsson P1 and Motorola RIZR Z8. It was also used in some PDA's such as the Dell Axim X50V and X51V featuring the MBX Lite powered Intel 2700G, as well as in set-top boxes featuring the MBX Lite-powered Intel CE 2110.

There are two variants: MBX and MBX Lite. Both have the same feature set. MBX is optimized for speed and MBX Lite is optimized for low power consumption. MBX could be paired up with an FPU, Lite FPU, VGP Lite and VGP.

Model Year Die Size (mm2)[أ] Core config Fillrate (@ 200 MHz) Bus width (bit) API (version)
MTriangles/s[أ] MPixel/s[أ] DirectX OpenGL
MBX Lite Feb 2001 4@130 nm? 0/1/1/1 1.0 100 64 7.0, VS 1.1 1.1
MBX Feb 2001 8@130 nm? 0/1/1/1 1.68 150 64 7.0, VS 1.1 1.1


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PowerVR Video Cores (MVED/VXD) and Video/Display Cores (PDP)

PowerVR's VXD is used in Apple iPhone, and their PDP series is used in some HDTVs, including the Sony BRAVIA.

Series5 (SGX)

PowerVR's Series5 SGX series features pixel, vertex, and geometry shader hardware, supporting OpenGL ES 2.0 and DirectX 10.1 with Shader Model 4.1.

The SGX GPU core is included in several popular systems-on-chip (SoC) used in many portable devices. Apple uses the A4 (manufactured by Samsung) in their iPhone 4, iPad, iPod touch, and Apple TV, and uses the Apple S1 in the Apple Watch. Texas Instruments' OMAP 3 and 4 series SoC's are used in the Amazon's Kindle Fire HD 8.9", Barnes and Noble's Nook HD(+), BlackBerry PlayBook, Nokia N9, Nokia N900, Sony Ericsson Vivaz, Motorola Droid/Milestone, Motorola Defy, Motorola RAZR D1/D3, Droid Bionic, Archos 70, Palm Pre, Samsung Galaxy SL, Galaxy Nexus, Open Pandora, and others. Samsung produces the Hummingbird SoC and uses it in their Samsung Galaxy S, Galaxy Tab, Samsung Wave S8500 Samsung Wave II S8530 and Samsung Wave III S860 devices. Hummingbird is also in Meizu M9 smartphone.

Intel uses the SGX540 in its Medfield platform for smartphones.[20]

Model Year Die Size (mm2)[أ] Core config[ب] Fillrate (@ 200 MHz) Bus width (bit) API (version) GFLOPS(@ 200 MHz) Frequency
MTriangles/s[أ] MPixel/s[أ] OpenGL ES OpenGL Direct3D
SGX520 Jul 2005 2.6@65 nm 1/1 7 100 32-128 2.0 {{N/A}} {{N/A}} 0.8 200
SGX530 Jul 2005 7.2@65 nm 2/1 14 200 32-128 2.0 {{N/A}} {{N/A}} 1.6 200
SGX531 Oct 2006 ? 2/1 14 200 32-128 2.0 {{N/A}} {{N/A}} 1.6 200
SGX535 Nov 2007 ? 2/2 14 400 32-128 2.0 2.1 9.0c 1.6 200
SGX540 Nov 2007 ? 4/2 20 400 32-128 2.0 2.1 {{N/A}} 3.2 200
SGX545 Jan 2010 12.5@65 nm 4/2 40 400 32-128 2.0 3.2 10.1 3.2 200

Series5XT (SGX)

PowerVR Series5XT SGX chips are multi-core variants of the SGX series with some updates. It is included in the PlayStation Vita portable gaming device with the MP4+ Model of the PowerVR SGX543, the only intended difference, aside from the + indicating features customized for Sony, is the cores, where MP4 denotes 4 cores (quad-core) whereas the MP8 denotes 8 cores (octo-core). The Allwinner A31 (quad-core mobile application processor) features the dual-core SGX544 MP2. The Apple iPad 2 and iPhone 4S with the A5 SoC also feature a dual-core SGX543MP2. The iPad (3rd generation) A5X SoC features the quad-core SGX543MP4.[21] The iPhone 5 A6 SoC features the tri-core SGX543MP3. The iPad (4th generation) A6X SoC features the quad-core SGX554MP4. The Exynos variant of the Samsung Galaxy S4 sports the tri-core SGX544MP3 clocked at 533 MHz.

Model Date Clusters Die Size (mm2) Core config[ت] Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 200 MHz,per core)
MPolygons/s (GP/s) (GT/s) OpenGL ES OpenGL OpenCL Direct3D
SGX543 Jan 2009 1-16 5.4@32 nm 4/2 35 3.2 ? 128-256 ? 2.0 2.0? 1.1 9.0 L1 6.4
SGX544 Jun 2010 1-16 5.4@32 nm 4/2 35 3.2 ? 128-256 ? 2.0 0.0 1.1 9.0 L3 6.4
SGX554 Dec 2010 1-16 8.7@32 nm 8/2 35 3.2 ? 128-256 ? 2.0 2.1 1.1 9.0 L3 12.8

These GPU can be used in either single-core or multi-core configurations.[22]

Series5XE (SGX)

Introduced in 2014, the PowerVR GX5300 GPU[23] is based on the SGX architecture and is the world's smallest Android-capable graphics core, providing low-power products for entry-level smartphones, wearables, IoT and other small footprint embedded applications, including enterprise devices such as printers.

Series6 (Rogue)

PowerVR Series6 GPUs[24] are based on an evolution of the SGX architecture codenamed Rogue. ST-Ericsson (now defunct) announced that its Nova application processors would include Imagination's next-generation PowerVR Series6 architecture.[25] MediaTek announced the quad-core MT8135 system on a chip (SoC) (two ARM Cortex-A15 and two ARM Cortex-A7 cores) for tablets.[26] Renesas announced its R-Car H2 SoC includes the G6400.[27] Allwinner Technology A80 SoC, (4 Cortex-A15 and 4 Cortex-A7) that is available in the Onda V989 tablet, features a PowerVR G6230 GPU.[28] The Apple A7 SoC integrates a graphics processing unit (GPU) which AnandTech believes to be a PowerVR G6430 in a four cluster configuration.[29]

PowerVR Series 6 GPUs have 2 TMUs/cluster.[30]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS (@ 600 MHz)

FP32/FP16

MPolygons/s (GP/s) (GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
G6100 Feb 2013 1 ??@28 nm 1/4 16 ? 2.4 2.4 128 ? 1.1 3.1 2.x 1.2 9.0 L3 38.4 / 57.6
G6200 Jan 2012 2 ??@28 nm 2/2 32 ? 2.4 2.4 ? ? 3.1 3.2 1.2 10.0 76.8 / 76.8
G6230 Jun 2012 2 ??@28 nm 2/2 32 ? 2.4 2.4 ? ? 3.1 3.2 1.2 10.0 76.8 / 115.2
G6400 Jan 2012 4 ??@28 nm 4/2 64 ? 4.8 4.8 ? ? 3.1 3.2 1.2 10.0 153.6/153.6
G6430 Jun 2012 4 ??@28 nm 4/2 64 ? 4.8 4.8 ? ? 3.1 3.2 1.2 10.0 153.6 / 230.4
G6630 Nov 2012 6 ??@28 nm 6/2 96 ? 7.2 7.2 ? ? 3.1 3.2 1.2 10.0 230.4 / 345.6

Series6XE (Rogue)

PowerVR Series6XE GPUs[31] are based around Series6 and designed as entry-level chips aimed at offering roughly the same fillrate compared to the Series5XT series. They however feature refreshed API support such as Vulkan, OpenGL ES 3.1, OpenCL 1.2 and DirectX 9.3 (9.3 L3).[32] Rockchip and Realtek have used Series6XE GPUs in their SoCs.

PowerVR Series 6XE GPUs were announced on January 6, 2014.[32][33]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 600 MHz)
MPolygons/s (GP/s) (GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
G6050 Jan 2014 0.5 ??@28 nm ?/? ? ? ?? ? ? ? 1.1 3.1 3.2 1.2 9.0 L3 ?? / ??
G6060 Jan 2014 0.5 ??@28 nm ?/? ? ? ?? ? ? ? 3.1 3.2 1.2 9.0 L3 ?? / ??
G6100 (XE) Jan 2014 1 ??@28 nm ?/? ? ? ?? ? ? ? 3.1 3.2 1.2 9.0 L3 38.4
G6110 Jan 2014 1 ??@28 nm ?/? ? ? ?? ? ? ? 3.1 3.2 1.2 9.0 L3 38.4


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Series6XT (Rogue)

PowerVR Series6XT GPUs[34] aims at reducing power consumption further through die area and performance optimization providing a boost of up to 50% compared to Series6 GPUs. Those chips sport PVR3C triple compression system-level optimizations and Ultra HD deep color.[35] The Apple iPhone 6, iPhone 6 Plus and iPod Touch (6th generation) with the A8 SoC feature the quad-core GX6450.[36][37] An unannounced 8 cluster variant was used in the Apple A8X SoC for their iPad Air 2 model (released in 2014). The MediaTek MT8173 and Renesas R-Car H3 SoCs use Series6XT GPUs.[38]

PowerVR Series 6XT GPUs were unveiled on January 6, 2014.[39][40]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 450 MHz)

FP32/FP16

MPolygons/s (GP/s) (GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GX6240 Jan 2014 2 ??@28 nm 2/4 64/128 ? ?? ? ? ? 1.1 3.1 3.3 1.2 10.0 57.6/115.2
GX6250 Jan 2014 2 ??@28 nm 2/4 64/128 35 2.8 2.8 128 ? 57.6/115.2
GX6450 Jan 2014 4 19.1mm2@28 nm 4/8 128/256 ? ?? ? ? ? 115.2/230.4
GX6650 Jan 2014 6 ??@28 nm 6/12 192/384 ? ?? ? ? ? 172.8/345.6
GXA6850 Unannounced 8 38mm2@28 nm 8/16 256/512 ? ?? ? 128 ? 230.4/460.8

Series7XE (Rogue)

PowerVR Series 7XE GPUs were announced on 10 November 2014.[41] When announced, the 7XE series contained the smallest Android Extension Pack compliant GPU.

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 600 MHz)
MPolygons/s (GP/s) (GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GE7400 Nov 2014 0.5 1.1 3.1 1.2 embedded profile 9.0 L3 19.2
GE7800 Nov 2014 1 38.4

Series7XT (Rogue)

PowerVR Series7XT GPUs[42] are available in configurations ranging from two to 16 clusters, offering dramatically scalable performance from 100 GFLOPS to 1.5 TFLOPS. The GT7600 is used in the Apple iPhone 6s and iPhone 6s Plus models (released in 2015) as well as the Apple iPhone SE model (released in 2016) and the Apple iPad model (released in 2017) respectively. An unannounced 12 cluster variant was used in the Apple A9X SoC for their iPad Pro models (released in 2015).

PowerVR Series 7XT GPUs were unveiled on 10 November 2014.[43][44]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 650 MHz) FP32/FP16
MPolygons/s (GP/s) (GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GT7200 Nov 2014 2 2/4 64/128 1.1 3.1 3.3 (4.4 optional) 1.2 embedded profile (FP optional) 10.0 (11.2 optional) 83.2/166.4
GT7400 Nov 2014 4 4/8 128/256 166.4/332.8
GT7600 Nov 2014 6 6/12 192/384 249.6/499.2
GT7800 Nov 2014 8 8/16 256/512 332.8/665.6
GTA7850 Unannounced 12 12/24 384/768 499.2/998.4
GT7900 Nov 2014 16 16/32 512/1024 665.6/1331.2

Series7XT Plus (Rogue)

PowerVR Series7XT Plus GPUs are an evolution of the Series7XT family and add specific features designed to accelerate computer vision on mobile and embedded devices, including new INT16 and INT8 data paths that boost performance by up to 4x for OpenVX kernels.[45] Further improvements in shared virtual memory also enable OpenCL 2.0 support. The GT7600 Plus is used in the Apple iPhone 7 and iPhone 7 Plus models (released in 2016) as well as the Apple iPad model (released in 2018).

PowerVR Series 7XT Plus GPUs were announced on International CES, Las Vegas – 6 January 2016.

Series7XT Plus achieve up to 4x performance increase for vision applications.

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 900 MHz)

FP32/FP16

MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GT7200 Plus January 2016 2 ? 2/4 64/128 4 4 1.1 3.2 3.3 (4.4 optional) 1.0.1 2.0 ?? 115.2/230.4
GT7400 Plus January 2016 4 ? 4/8 128/256 8 8 230.4/460.8
GT7600 Plus June 2016 6 ??@10 nm 6/12 192/384 12 12 4.4 12 345.6/691.2

The GPUs are designed to offer improved in-system efficiency, improved power efficiency and reduced bandwidth for vision and computational photography in consumer devices, mid-range and mainstream smartphones, tablets and automotive systems such as advanced driver assistance systems (ADAS), infotainment, computer vision and advanced processing for instrument clusters.

The new GPUs include new feature set enhancements with a focus on next-generation compute:

Up to 4x higher performance for OpenVX/vision algorithms compared to the previous generation through improved integer (INT) performance (2x INT16; 4x INT8) Bandwidth and latency improvements through shared virtual memory (SVM) in OpenCL 2.0 Dynamic parallelism for more efficient execution and control through support for device enqueue in OpenCL 2.0

Series8XE (Rogue)

PowerVR Series8XE GPUs support OpenGL ES 3.2 and Vulkan 1.x and are available in 1, 2, 4 and 8 pixel/clock configurations,[46] enabling the latest games and apps and further driving down the cost of high quality UIs on cost sensitive devices.

PowerVR Series 8XE were announced February 22, 2016 at the Mobile World Congress 2016. There are an iteration of the Rogue microarchitecture and target entry-level SoC GPU market. New GPUs improve the performance/mm2 for the smallest silicon footprint and power profile, while also incorporating hardware virtualization and multi-domain security.[47] Newer model were later released in January 2017, with a new low end and high end part.[48]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 650 MHz)

FP32/FP16

MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE8100 January 2017 0.25 ? ? 0.65 1.1 3.2 ? 1.1 1.2 EP 9.3 (optional) 10.4 / 20.8
GE8200 February 2016 0.5 ? ? 1.3 20.8 / 41.6
GE8300 February 2016 1 ? ? 2.6 41.6 / 83.2
GE8310 February 2016 1 ? ? 2.6 41.6 / 83.2
GE8430 January 2017 2 ? ? 5.2 166.4 / 332.8

Series8XE Plus (Rogue)

PowerVR Series 8XE Plus were announced January 2017. There are an iteration of the Rogue microarchitecture and target the mid range SoC GPU market, targeting 1080p.[48] The 8XE Plus remains focused on die size and performance per unit

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 650 MHz)

FP32/FP16

MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE8320 January 2017 2 ? ? 1.1 3.2 ? 1.1 1.2 EP ? 41.6 / 83.2
GE8325 January 2017 ? ? ? ? / ?
GE8340 January 2017 4 ? ? 83.2 / 166.4

Series8XT (Furian)

Announced on 8 March 2017, Furian is the first new PowerVR architecture since Rogue was introduced five years earlier.[49][50][51]

PowerVR Series 8XT were announced March 8, 2017. It's the first series GPU's based on the new Furian architecture. According to Imagination, GFLOPS/mm2 is improved 35% and Fill rate/mm2 is improved 80% compared to the 7XT Plus series on the same node. Specific designs aren't announced as of March 2017. Series8XT features 32-wide pipeline clusters.

Model Date Clusters Die Size (mm2) Cluster config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS

FP32/FP16 per clock

MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GT8525 March 2017 2 2/? 64 8 8 1.1 3.2+ ? 1.1 2.0 ? 192/96
GT8540[52] January 2018 4 4/? 128 16 16 3.2 ? 1.1 2.0 ? 384/192

Series9XE (Rogue)

Announced in September 2017, Series9XE family of GPUs benefit from up to 25% Bandwidth savings over the previous generation GPUs.[53] The Series9XE family is targeted for set-top boxes (STB), digital TVs (DTV) and low end smartphones SoCs Note: Data in table is per cluster.[54]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS
MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE9000 September 2017 0.25 16/1 0.65 @650 MHz 0.65 @650 MHz 1.1 3.2 1 1.2 EP 10.4 @650 MHz
GE9100 September 2017 0.25 16/2 1.3 @650 MHz 1.3 @650 MHz 10.4 @650 MHz
GE9115 January 2018 0.5 32/2 1.3 @650 MHz 1.3 @650 MHz 20.8 @650 MHz
GE9210 September 2017 0.5 32/4 2.6 @650 MHz 2.6 @650 MHz 20.8 @650 MHz
GE9215 January 2018 0.5 32/4 2.6 @650 MHz 2.6 @650 MHz 20.8 @650 MHz
GE9420 September 2017

Series9XM (Rogue)

The Series9XM family of GPUs achieve up to 50% better performance density than the previous 8XEP generation.[55] The Series9XM family targets mid-range smartphone SoCs.

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS
MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GM9220 September 2017 1 64/4 2.6 @650 MHz 2.6 @650 MHz 1.1 3.2 1 1.2 EP 41.6 @650 MHz
GM9240 September 2017 2 128/4 2.6 @650 MHz 2.6 @650 MHz 83.2 @650 MHz

Series9XEP (Rogue)

The Series9XEP family of GPUs was announced on December 4, 2018.[56] The Series9XEP family supports PVRIC4 image compression.[57] The Series9XEP family targets set-top boxes (STB), digital TVs (DTV) and low end smartphones SoCs.

Series9XMP (Rogue)

The Series9XMP family of GPUs was announced on December 4, 2018.[56] The Series9XMP family supports PVRIC4 image compression.[57] The Series9XMP family targets mid-range smartphone SoCs.

Series9XTP (Furian)

The Series9XTP family of GPUs was announced on December 4, 2018.[56] The Series9XTP family supports PVRIC4 image compression.[57] The Series9XTP family targets high-end smartphone SoCs. Series9XTP features 40-wide pipeline clusters.

IMG A-Series (Albiorix)

The A-Series GPUs offer up to 250% better performance density than the previous Series 9. These GPUs are no longer called PowerVR, they are called IMG.[58] Imagination Technologies signed a new "multi-year, multi-lease agreement" with Apple for integration in future iOS devices on January 2, 2020.[59] The re-kindling of the partnership between the two companies comes as Apple's licences to Imagination graphics IP expire at the end of 2019.[60]

Model Date Clusters Die Size (mm2) Core config[ث] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS (FP32)

@1 GHz

MPolygons/s (GP/s) (GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
IMG AXE-1-16[61] December 2019 ? ? ? 1 1.1 3.x ? ? 1.2 EP ? 16
IMG AXE-2-16[62] ? 2 16
IMG AXM-8-256[63] ? ? 8 2.0 EP 256
IMG AXT-16-512[64] 2 16 512
IMG AXT-32-1024[65] 4 32 1024
IMG AXT-48-1536[66] 6 48 1536
IMG AXT-64-2048[67] 8 64 2048

Notes

  1. ^ أ ب ت ث ج ح Official Imgtec data
  2. ^ USSE (Universal Scalable Shader Engine) lanes/TMUs
  3. ^ USSE2 (Universal Scalable Shader Engine 2) lanes/TMUs
  4. ^ أ ب ت ث ج ح خ د ذ ر ز س USC (Unified Shading Cluster) lanes/TMUs per cluster
  • All models support Tile based deferred rendering (TBDR)

PowerVR Vision & AI

Series2NX

The Series2NX family of Neural Network Accelerators (NNA) was announced on September 21, 2017.[68]

Series2NX core options:

Model Date Engines 8-bit TOPS 16-bit TOPS 8-bit MACs 16-bit MACs APIs
AX2145[69] September 2017 ? 1 0.5 512/clk 256/clk IMG DNN

Android NN

AX2185[70] 8 4.1 2.0 2048/clk 1024/clk

Series3NX

The Series3NX family of Neural Network Accelerators (NNA) was announced on December 4, 2018.[71]

Series3NX core options:

Model Date Engines 8-bit TOPS 16-bit TOPS 8-bit MACs 16-bit MACs APIs
AX3125[72] December 2018 ? 0.6 ? 256/clk 64/clk IMG DNN

Android NN

AX3145[73] ? 1.2 ? 512/clk 128/clk
AX3365[74] ? 2.0 ? 1024/clk 256/clk
AX3385[75] ? 4.0 ? 2048/clk 512/clk
AX3595[76] ? 10.0 ? 4096/clk 1024/clk

Series3NX multi-core options

Model Date Cores 8-bit TOPS 16-bit TOPS 8-bit MACs 16-bit MACs APIs
UH2X40 December 2018 2 20.0 ? 8192/clk 2048/clk IMG DNN

Android NN

UH4X40 4 40.0 ? 16384/clk 4096/clk
UH8X40 8 80.0 ? 32768/clk 8192/clk
UH16X40 16 160.0 ? 65536/clk 16384/clk

Series3NX-F

The Series3NX-F family of Neural Network Accelerators (NNA) was announced alongside the Series3NX family. The Series3NX-F family combines the Series 3NX with a Rogue-based GPGPU (NNPU), and local RAM. This allows support for programmability and floating-point.[71]

Implementations

The PowerVR GPU variants can be found in the following table of systems on chips (SoC). Implementations of PowerVR accelerators in products are listed here.

Vendor Date SOC name PowerVR chipset Frequency GFLOPS (FP16)
Texas Instruments OMAP 3420 SGX530 ? ?
OMAP 3430 ? ?
OMAP 3440 ? ?
OMAP 3450 ? ?
OMAP 3515 ? ?
OMAP 3517 ? ?
OMAP 3530 110 MHz 0.88
OMAP 3620 ? ?
OMAP 3621 ? ?
OMAP 3630 ? ?
OMAP 3640 ? ?
Sitara AM335x[77] 200 MHz 1.6
Sitara AM3715 ? ?
Sitara AM3891 ? ?
DaVinci DM3730 ? ?
Texas Instruments Integra C6A8168 SGX530 ? ?
NEC EMMA Mobile/EV2 SGX530 ? ?
Renesas SH-Mobile G3 SGX530 ? ?
SH-Navi3 (SH7776) ? ?
Sigma Designs SMP8656 SGX530 ? ?
SMP8910 ? ?
Texas Instruments DM3730 SGX530 200 MHz 1.6
MediaTek MT6513 SGX531 281 MHz 2.25
2010 MT6573
2012 MT6575M
Trident PNX8481 SGX531 ? ?
PNX8491 ? ?
HiDTV PRO-SX5 ? ?
MediaTek MT6515 SGX531 522 MHz 4.2
2011 MT6575
MT6517
MT6517T
2012 MT6577
MT6577T
MT8317
MT8317T
MT8377
NEC NaviEngine EC-4260 SGX535 ? ?
NaviEngine EC-4270
Intel CE 3100 (Canmore) SGX535 ? ?
SCH US15/W/L (Poulsbo) ? ?
CE4100 (Sodaville) ? ?
CE4110 (Sodaville) 200 MHz 1.6
CE4130 (Sodaville)
CE4150 (Sodaville) 400 MHz 3.2
CE4170 (Sodaville)
CE4200 (Groveland)
Samsung APL0298C05 SGX535 ? ?
Apple April 3, 2010 Apple A4 (iPhone 4) SGX535 200 MHz 1.6
Apple A4 (iPad) 250 MHz 2.0
Ambarella iOne SGX540 ? ?
Renesas SH-Mobile G4 SGX540 ? ?
SH-Mobile APE4 (R8A73720) ? ?
R-Car E2 (R8A7794) ? ?
Ingenic Semiconductor JZ4780 SGX540 ? ?
Samsung 2010 Exynos 3110 SGX540 200 MHz 3.2
2010 S5PC110
S5PC111
S5PV210 ? ?
Texas Instruments Q1 2011 OMAP 4430 SGX540 307 MHz 4.9
OMAP 4460 384 MHz 6.1
Intel Q1 2013 Atom Z2420 SGX540 400 MHz 6.4
Actions Semiconductor ATM7021 SGX540 500 MHz 8.0
ATM7021A
ATM7029B
Rockchip RK3168 SGX540 600 MHz 9.6
Apple November 13, 2014 Apple S1 (Apple Watch Series 0) SGX543 ? ?
March 11, 2011 Apple A5 (iPhone 4S, iPod touch 5th) SGX543 MP2 200 MHz 12.8
March 2012 Apple A5 (iPad 2, iPad mini) 250 MHz 16.0
MediaTek MT5327 SGX543 MP2 400 MHz 25.6
Renesas R-Car H1 (R8A77790) SGX543 MP2 ? ?
Apple September 12, 2012 Apple A6 (iPhone 5, iPhone 5C) SGX543 MP3 250 MHz 24.0
March 7, 2012 Apple A5X (iPad 3rd) SGX543 MP4 32.0
Sony CXD53155GG (PS Vita) SGX543 MP4+ 41-222 MHz 5.248-28.416
ST-Ericsson Nova A9540 SGX544 ? ?
NovaThor L9540 ? ?
NovaThor L8540 500 MHz 16
NovaThor L8580 600 MHz 19.2
MediaTek July 2013 MT6589M SGX544 156 MHz 5
MT8117
MT8121
March 2013 MT6589 286 MHz 9.2
MT8389
MT8125 300 MHz 9.6
July 2013 MT6589T 357 MHz 11.4
Texas Instruments Q2 2012 OMAP 4470 SGX544 384 MHz 13.8
Broadcom Broadcom M320 SGX544 ? ?
Broadcom M340
Actions Semiconductor ATM7039 SGX544 450 MHz 16.2
Allwinner Allwinner A31 SGX544 MP2 300 MHz 19.2
Allwinner A31S
Intel Q2 2013 Atom Z2520 SGX544 MP2 300 MHz 21.6
Atom Z2560 400 MHz 25.6
Atom Z2580 533 MHz 34.1
Texas Instruments Q2 2013 OMAP 5430 SGX544 MP2 533 MHz 34.1
OMAP 5432
Q4 2018 Sitara AM6528
Sitara AM6548
SGX544
Allwinner Allwinner A83T SGX544 MP2 700 MHz 44.8
Allwinner H8
Samsung Q2 2013 Exynos 5410 SGX544 MP3 533 MHz 51.1
Intel Atom Z2460 SGX545 533 MHz 8.5
Atom Z2760
Atom CE5310 ? ?
Atom CE5315 ? ?
Atom CE5318 ? ?
Atom CE5320 ? ?
Atom CE5328 ? ?
Atom CE5335 ? ?
Atom CE5338 ? ?
Atom CE5343 ? ?
Atom CE5348 ? ?
Apple October 23, 2012 Apple A6X (iPad 4th) SGX554 MP4 300 MHz 76.8
Apple September, 2016 Apple S1P (Apple Watch Series 1), Apple S2 (Apple Watch Series 2) Series6 (G6050 ?) ? ?
Rockchip RK3368 G6110 600 MHz 38.4
MediaTek Q1 2014 MT6595M G6200 (2 Clusters) 450 MHz 57.6
MT8135
Q4 2014 Helio X10 (MT6795M) 550 MHz 70.4
Helio X10 (MT6795T)
Q1 2014 MT6595 600 MHz 76.8
MT6795 700 MHz 89.5
LG Q1 2012 LG H13 G6200 (2 Clusters) 600 MHz 76.8
Allwinner Allwinner A80 G6230 (2 Clusters) 533 MHz 68.0
Allwinner A80T
Actions Semiconductor ATM9009 G6230 (2 Clusters) 600 MHz 76.8
MediaTek Q1 2015 MT8173 GX6250 (2 Clusters) 700 MHz 89.6
Q1 2016 MT8176 600 MHz 76.8
Intel Q1 2014 Atom Z3460 G6400 (4 Clusters) 533 MHz 136.4
Atom Z3480
Renesas R-Car H2 (R8A7790x) G6400 (4 Clusters) 600 MHz 153.6
R-Car H3 (R8A7795) GX6650 (6 Clusters) 230.4
Apple September 10, 2013 Apple A7 (iPhone 5S, iPad Air, iPad mini 2, iPad mini 3) G6430 (4 Clusters) 450 MHz 115.2
Intel Q2 2014 Atom Z3530 G6430 (4 Clusters) 457 MHz 117
Atom Z3560 533 MHz 136.4
Q3 2014 Atom Z3570
Q2 2014 Atom Z3580
Apple September 9, 2014 Apple A8 (iPhone 6 / 6 Plus, iPad mini 4, Apple TV 4th,

iPod Touch 6th)

GX6450 (4 Clusters) 533 MHz 136.4
October 16, 2014 Apple A8X (iPad Air 2) GX6850 (8 Clusters) 272.9
September 9, 2015 Apple A9 (iPhone 6S / 6S Plus, iPhone SE 1st, iPad 5th) Series7XT GT7600 (6 Clusters) 600 MHz 230.4
Apple A9X (iPad Pro 9.7, iPad Pro 12.9 1st) Series7XT GT7800 (12 Clusters) >652 MHz >500[78]
September 7, 2016 Apple A10 Fusion (iPhone 7 / 7 Plus & iPad 6th) Series7XT GT7600 Plus (6 Clusters) 900 MHz 345.6
Spreadtrum 2017 SC9861G-IA Series7XT GT7200
MediaTek Q1 2017 Helio X30 (MT6799) Series7XT GT7400 Plus (4 Clusters) 800 MHz 204.8
Apple June 5, 2017 Apple A10X (iPad Pro 10.5, iPad Pro 12.9 2nd, Apple TV 4K) Series7XT GT7600 Plus (12 Clusters) >912 MHz >700[79]
Socionext 2017 SC1810 Series8XE
Synaptics 2017 Berlin BG5CT Series8XE GE8310
Mediatek 2017 MT6739 Series8XE GE8100
MT8167 Series8XE GE8300
2018 Helio P22 Series8XE GE8320
Helio A22
Helio P35
Renesas 2017 R-Car D3 (R8A77995) Series8XE GE8300
Unisoc (Spreadtrum) 2018 SC9863A Series8XE GE8322
Q1 2019 Tiger T310 Series8XE GE8300
Mediatek 2018 Helio P90 Series9XM GM9446
Unisoc Q3 2019 Tiger T710 Series9XM GM9446

See also

  • List of products featuring PowerVR accelerators
  • Adreno – GPU developed by Qualcomm
  • Mali – available as SIP block to 3rd parties
  • Vivante – available as SIP block to 3rd parties
  • Tegra – family of SoCs for mobile computers, the graphics core could be available as SIP block to 3rd parties
  • VideoCore – family of SOCs, by Broadcom, for mobile computers, the graphics core could be available as SIP block to 3rd parties
  • Atom family of SoCs – with Intel graphics core, not licensed to 3rd parties
  • AMD mobile APUs – with AMD graphics core, not licensed to 3rd parties

References

  1. ^ Smith, Ryan. "Hidden Secrets: Investigation Shows That NVIDIA GPUs Implement Tile Based Rasterization for Greater Efficiency". www.anandtech.com.
  2. ^ Texas Instruments announces multi-core, 1.8GHz OMAP4470 ARM processor for Windows 8, By Amar Toor, June 2, 2011, Engadget
  3. ^ "PowerVR - embedded graphics processors powering iconic products".
  4. ^ "Compaq Selects PowerVR 3D Graphics Architecture for Next- Generation, High-Performance Presarios Home PCs". Imagination Technologies Limited. Retrieved 24 April 2013.
  5. ^ "VideoLogic Targets PC OEMs with PowerVR 3D Accelerator Card". Imagination Technologies Limited.
  6. ^ "VideoLogic Launches PowerVR-Based 3D Graphics Card Apocalypse 3D". Imagination Technologies Limited. Retrieved 24 April 2013.
  7. ^ "Back to the start: PowerVR 25". August 23, 2017.
  8. ^ "Matrox Graphics Inc. Selects PowerVR for new 3D Accelerator Add-In Card Range". Imagination Technologies Limited.
  9. ^ "Power VR Prepares Highlander". Next Generation. No. 34. Imagine Media. October 1997. p. 20.
  10. ^ أ ب Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. Institute of Electrical and Electronics Engineers. 19 (6): 29–35. doi:10.1109/40.809375. Archived from the original on 2000-08-23.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  11. ^ https://web.archive.org/web/20001011035118/http://sharkyextreme.com/hardware/reviews/video/neon250/15.shtml
  12. ^ Witheiler, Matthew. "STMicroelectronics Kyro II 64MB". www.anandtech.com.
  13. ^ http://dumpster.hardwaretidende.dk/dokumenter/nvidia_on_kyro.pdf
  14. ^ "Imagination Technologies' PowerVR™ in STMicroelectronics' KYRO™ PC Graphics Accelerator Unveiled".
  15. ^ "STMicrolectronics announces next generation KYRO II ™ 3D Graphics Accelerator".
  16. ^ "PowerVR Technologies Debuts KYRO II SE™ Graphics Processor at CeBIT 2002".
  17. ^ "Ace's Hardware". February 2, 2002. Archived from the original on February 2, 2002.
  18. ^ "Beyond3D - Imagination Technologies Videologic Vivid! 32MB KYRO". www.beyond3d.com.
  19. ^ https://www.vogons.org/download/file.php?id=20346
  20. ^ Intel's Medfield & Atom Z2460 Arrive for Smartphones: It's Finally Here, by Anand Lal Shimpi, January 10, 2012, anandtech
  21. ^ Apple iPad 2 GPU Performance Explored: PowerVR SGX543MP2 Benchmarked, by Anand Lal Shimpi, 2011/03/12, Anandtech
  22. ^ TI Announces OMAP4470 and Specs: PowerVR SGX544, 1.8 GHz Dual Core Cortex-A9, by Brian Klug, 6/2/2011, AnandTech, Inc.
  23. ^ "PowerVR Series5XE GX5300 GPU - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2016-06-22.
  24. ^ "PowerVR Series6 - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2016-06-22.
  25. ^ "Imagination partners drive mobile and embedded graphics to new level". 15 February 2011. Archived from the original on 18 January 2013. Retrieved 3 March 2011., Imagination Technologies Ltd.
  26. ^ "MediaTek Introduces Industry Leading Tablet SoC, MT8135". Archived from the original on 2013-08-01., MediaTek Inc.
  27. ^ "R-Car H2"., Renesas Electronics Corporation Ltd
  28. ^ Aufranc, Jean-Luc (July 1, 2014). "Pictures and Specs for CubieBoard 8 Development Board Powered by AllWinner A80 SoC".
  29. ^ Lal Shimpi, Anand (September 17, 2013). "The iPhone 5s Review: GPU Architecture". AnandTech. Retrieved September 18, 2013.
  30. ^ Shimpi, Anand Lal. "The iPhone 5s Review". www.anandtech.com.
  31. ^ "PowerVR Series6XE GPU Family - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2016-06-22.
  32. ^ أ ب Imagination Technologies Announces Entry-Level PowerVR Series6XE GPU Family, January 6, 2014, AnandTech
  33. ^ Imagination drives highly-advanced PowerVR Series6 architecture into all key entry-level mobile and consumer segments, January 6, 2014, Imagination
  34. ^ "PowerVR Series6XT GPU Family - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2016-06-22.
  35. ^ Imagination Technologies Announces PowerVR Series6XT Architecture, January 6, 2014, Imagination
  36. ^ "Inside the iPhone 6 and iPhone 6 Plus". Chipworks. September 19, 2014. Archived from the original on May 3, 2015. Retrieved September 24, 2014.
  37. ^ Smith, Ryan (September 23, 2014). "Chipworks Disassembles Apple's A8 SoC: GX6450, 4MB L3 Cache & More". AnandTech. Retrieved September 24, 2014.
  38. ^ "New devices using PowerVR Series6XT GPUs: MediaTek MT8173 and Renesas R-Car H3 - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). 2015-12-10. Retrieved 2016-06-22.
  39. ^ "Imagination's new generation PowerVR Series6XT architecture delivers up to 50% higher performance and advanced power management". Imagination Technologies. January 6, 2014.
  40. ^ Smith, Ryan (January 6, 2014). "Imagination Technologies Announces PowerVR Series6XT Architecture". AnandTech.
  41. ^ Voica, Alexandru (10 November 2014). "New PowerVR Series7XE family targets the next billion mobile and embedded GPUs". Imagination Technologies. Retrieved 10 November 2014.
  42. ^ "PowerVR Series7XT GPU Family - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2016-06-22.
  43. ^ Voica, Alexandru (10 November 2014). "PowerVR Series7XT GPUs push graphics and compute performance to the max". Imagination Technologies. Retrieved 10 November 2014.
  44. ^ "Discover all the latest news from our official blog". Imagination.
  45. ^ "PowerVR Series7XT Plus GPUs: where advanced graphics meets computer vision - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). 2016-01-06. Retrieved 2016-06-22.
  46. ^ "PowerVR Series8XE GPU Family". Retrieved 26 August 2018.
  47. ^ "Latest Imagination PowerVR® Series8XE GPUs set new standard for performance, power and area in cost-sensitive markets".
  48. ^ أ ب Smith, Ryan (17 January 2017). "Imagination Announces PowerVR Series8XE Plus & New Series8XE Designs for Midrange Market". Anandtech. Retrieved 17 January 2017.
  49. ^ "Imagination's new PowerVR Furian GPU architecture will deliver captivating and engaging visual and vision experiences - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2017-03-08.
  50. ^ "PowerVR Furian Architecture - Imagination Technologies". Imagination Technologies (in الإنجليزية البريطانية). Retrieved 2017-03-08.
  51. ^ Smith, Ryan. "Imagination Announces PowerVR Furian GPU Architecture: The Next Generation of PowerVR". Retrieved 2017-03-08.
  52. ^ Fiveash, Kelly (4 May 2017). "Imagination Technologies Can't Resolve Apple IP Spat, Opens Formal Dispute". Arstechnica. Retrieved 8 January 2018. Starting in 2019, Apple will no longer use firm's designs.
  53. ^ "PowerVR Series9XE GPU Family".
  54. ^ "Making the best even better: PowerVR Series9XE and 9XM – the ultimate GPUs for today's embedded platforms". January 9, 2018.
  55. ^ "PowerVR Series9XM GPU Family".
  56. ^ أ ب ت "PowerVR 9XEP, 9XMP, and 9XTP GPUs Launched". PC Perspective (in الإنجليزية الأمريكية). Retrieved 2019-05-30.
  57. ^ أ ب ت "Introducing PVRIC4 – taking image compression to the next level". Imagination (in الإنجليزية البريطانية). 2018-10-31. Retrieved 2019-05-30.
  58. ^ "IMG A-Series GPU". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  59. ^ Frumusanu, Andrei. "Imagination Announces A-Series GPU Architecture: "Most Important Launch in 15 Years"". www.anandtech.com. Retrieved 2020-01-04.
  60. ^ Worrel, Jon. "Apple to drop Imagination Technologies licenses by 2019". fudzilla.com (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  61. ^ "IMG AXE-1-16 GPU". Imagination Technologies Limited. 2019. Retrieved 3 January 2020.
  62. ^ "Find out about the PowerVR IMG AXE-2-16 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  63. ^ "Find out about the PowerVR IMG AXM-8-256 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  64. ^ "Find out about the PowerVR IMG AXT-16-512 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  65. ^ "Find out about the PowerVR IMG AXT-32-1024 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  66. ^ "Find out about the PowerVR IMG AXT-48-1536 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  67. ^ "Find out about the PowerVR IMG AXT-64-2048 embedded GPU IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2020-01-04.
  68. ^ "Imagination reveals PowerVR Neural Network Accelerator (NNA) with 2x the performance and half the bandwidth of nearest competitor". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  69. ^ "PowerVR AX2145 Neural Network Accelerator (NNA) IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  70. ^ "PowerVR AX2185 Neural Network Accelerator (NNA) IP Core". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  71. ^ أ ب Oh, Nate. "Imagination Goes Further Down the AI Rabbit Hole, Unveils PowerVR Series3NX Neural Network Accelerator". www.anandtech.com. Retrieved 2019-05-30.
  72. ^ "PowerVR AX3125". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  73. ^ "PowerVR AX3145". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  74. ^ "PowerVR AX3365". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  75. ^ "PowerVR AX3385". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  76. ^ "PowerVR AX3595". Imagination (in الإنجليزية البريطانية). Retrieved 2019-05-30.
  77. ^ http://www.ti.com/product/am3358
  78. ^ Apple (2016-03-23), Apple - March Event 2016, https://www.youtube.com/watch?v=0wIiDnjz4X4&t=50m45s, retrieved on 2017-09-29 
  79. ^ Humrick, Ryan Smith, Matt. "40% Graphics Performance A9X". check references 44. Retrieved 2017-09-29.{{cite news}}: CS1 maint: multiple names: authors list (link)

External links

الكلمات الدالة: