ملاحظ الحالة

ملاحظ لوننبرگر هو عبارة عن نظام يستعمل لحساب الحالة في نظام آخر و تكون مداخل الملاحظ هي مداخل و مخارج النظام وتكون مخارج الملاحظ هي حالات النظام المراد معرفة حالته. يستعمل ملاحظ لوننبرگر في التحكم عن طريق إرجاع الحالة.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ملاحظ الحالة النمطي

The state of a physical discrete-time system is assumed to satisfy




ملاحظ النمط المنزلق

where:

  • The vector extends the scalar signum function to dimensions. That is,
for the vector .
  • The vector has components that are the output function and its repeated Lie derivatives. In particular,
where is the ith Lie derivative of output function along the vector field (i.e., along trajectories of the non-linear system). In the special case where the system has no input or has a relative degree of n, is a collection of the output and its derivatives. Because the inverse of the Jacobian linearization of must exist for this observer to be well defined, the transformation is guaranteed to be a local diffeomorphism.
  • The diagonal matrix of gains is such that
where, for each , element and suitably large to ensure reachability of the sliding mode.
  • The observer vector is such that
where here is the normal signum function defined for scalars, and denotes an "equivalent value operator" of a discontinuous function in sliding mode.


The modified observation error can be written in the transformed states . In particular,

and so

وبذلك:

  1. ما دام , the first row of the error dynamics, , will meet sufficient conditions to enter the sliding mode in finite time.
  2. Along the surface, the corresponding equivalent control will be equal to , and so . Hence, so long as , the second row of the error dynamics, , will enter the sliding mode in finite time.
  3. Along the surface, the corresponding equivalent control will be equal to . Hence, so long as , the th row of the error dynamics, , will enter the sliding mode in finite time.

So, for sufficiently large gains, all observer estimated states reach the actual states in finite time. In fact, increasing allows for convergence in any desired finite time so long as each function can be bounded with certainty. Hence, the requirement that the map is a diffeomorphism (i.e., that its Jacobian linearization is invertible) asserts that convergence of the estimated output implies convergence of the estimated state. That is, the requirement is an observability condition.

In the case of the sliding mode observer for the system with the input, additional conditions are needed for the observation error to be independent of the input. For example, that

does not depend on time. The observer is then

انظر أيضاً

Gxermo2.svg هذه المقالة عبارة عن بذرة تحتاج للنمو والتحسين؛ فساهم في إثرائها بالمشاركة في تحريرها.