مخطط مستوي

في المخططات، المخطط المستوي هو المخطط الذي يقبل تمثيلا في المستوى، بحيث لا يتقاطع أي ارتباطين من المخطط.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

معايير المخطط المستوي

حسب Kuratowski يكون المخطط مستويا إذا لم يتضمن زمرة من الرتبة 5، أو مخطط ثنائي كامل من الرتبة 3 (انظر الصور).


وجوه مخطط مستوي

ليكن G مخطط مستوي، الوجه F هو أكبر منطقة من المستوى محددة بمجموعة ارتباطات G و لا تتضمن أيا منها.

ليكن G مخطط مستوي، و a عدد ارتباطات G. إذن :

صيغة أولير

تعاريف

  • المسار ذو الطول r هو سلسلة من القمم المرتبطة مع أصل السبيل و طرفه.
  • يكون المخطط متصلا إذا وُجد مسار بين كل قمتين من G.
  • المسار المغلق هو حالة .
  • الشجرة هي مخطط متصل بدون أي مسار مغلق.

تمهيدة

كل مخطط متصل يمكن الحصول عليه بإضافة عدة قمم لشجرة (لها نفس عدد القمم).

صيغة أولير للمخططات المستوية المتصلة

ليكن G مخطط مستوي متصل. ليكن n عدد قمم a, G عدد ارتباطاته و f عدد وجوهه. إذن: n − a + f = 2

المعايير

تحديد المعايير التي تمكن من معرفة ان كان مخطط ما مستويا. ليكن G مخطط مستوي متصل. ليكن n عدد قمم a, G عدد ارتباطاته:

  1. في حالة وجود مثلثات.
  2. في حالة عدم وجود مثلثات.