في الرياضيات، يسمى عددا متساميا Transcendental number كل عدد حقيقي أو عقدي لا يكون حلا لأية معادلة حدودية:
بحيث وتكون المعاملات أعدادا صحيحة (وبالتالي جذرية)، وأن يكون على الأقل أحد تلك المعاملات غير منعدم. إذن يكون العدد متساميا إذا وفقط إذا لم يكن جبريا.
لا يمكن أن تكون الأعداد المتسامية أعدادا جذرية. ومع ذلك، ليست كل الأعداد اللاجذرية متسامية: جذر مربع العدد 2 هو عدد لاجذري، ولكنه حل للمعادلة .
مجموعة الأعداد المتسامية هي مجموعة غير قابلة للعد. والبرهان بسيط: بما أننا نستطيع عد الحدوديات ذات معاملات صحيحة، وبما أن كل حدودية تقبل عددا منتهيا من الحلول، فإن مجموعة الأعداد الجبرية هي مجموعة قابلة للعد.
في حين، ينص برهان القطر لكانتور على أن مجموعة الأعداد الحقيقية (وبالتالي حتى العقدية) هي مجموعة غير قابلة للعد. وبالتالي مجموعة الأعداد المتسامية هي أيضا مجموعة غير قابلة للعد. بتعبير آخر، الأعداد الجبرية أقل بكثير من الأعداد المتسامية. ولكن عددا قليلا فقط من فئات الأعداد المتسامية معروف، ويبقى من الصعب البرهان على أن عددا ما هو عدد متسام.
نتائج: لتكن A مجموعة الأعداد الجبرية الحقيقية، إذن:
A جسم جزئي من . وبشكل خاص، المجموعة A مستقرة بالنسبة للجمع والضرب.
A هي مجموعة قابلة للعد، مما يدل على أن A مختلفة عن المجموعة . (الأعداد المتسامية موجودة).
تاريخ
من المرجح أن يكون لايبنتز أول شخص خمن وجود أعداد لا تحقق معادلات حدودية بمعاملات جذرية. وأتت التسمية متسام في البحث الذي نشره سنة 1682 والذي برهن فيه على أن ليست دالة جبرية ل .
حيث يكون العدد النوني بعد الفاصلة 1 إذا كان n عامليا (أحد الأعداد 1، 2، 6، 24، 120، 720،...) ويكون 0 في الحالات الأخرى. ويمكن تقريب هذا العدد بشكل خاص بأعداد جذرية. برهن ليوفيل على أن الأعداد التي تحقق هذه الخاصية (والتي تعرف باسم أعداد ليوفيل) هي أعداد متسامية.
تظنن يوهان هنريك لامبرت، في مقاله الذي برهن فيه أن العدد ليس جذريا، أن العددين و هما عددان متساميان. وقد برهن تشارلز هيرمت، سنة 1873، على أن العدد هو عدد غير متسام. ليكون بذلك أول عدد برهن على أنه متسام دون أن ينشئ كذلك. وفي سنة 1874، وضع جورج كانتور البرهان المذكور أعلاه والذي يقود إلى أن مجموعة الأعداد المتسامية غير قابلة للعد.
في سنة 1900، طرح ديفيد هيلبرت سؤالا مهما بخصوص الأعداد المتسامية، يعرف باسم مسألة هيلبرت السابعة: « إذا كان a عددا جبريا غير منعدم ويخالف 1، وكان b عددا جبريا لاجذريا، فهل سيكون العدد متساميا بالضرورة؟ ». وكان الجواب نعم، سنة 1934 بمبرهنة جيلفوند شنايدر. يستطاع بسهولة الحصول على أعداد متسامية بفضل تلك المبرهنة، مثلا: ، و.
ثابتة جيلفوند-شنايدر. أو بشكل عام: حيث و عدد جبري، و b جبري وليس جذريا. الحالة العامة لمسألة هيلبرت السابعة، أي تحديد هل العدد متسام أم لا عندما يكون و عددا جبريا و b لاجذريا، لم تحل إلى الآن.
حيث هو الجزء الصحيح للعدد . مثلا: من أجل يساوي هذا العدد:
ثابتة تشيتين. وبشكل عام: كل عدد لا يمكن حسابه هو عدد متسام.
كل دالة جبرية غير ثابتة لمتغير عددي تعطي قيما متسامية إذا طبقنا عليها عددا متساميا. مثلا: بمعرفة أن العدد متسام، نستنتج مباشرة أن ، ، و هي أعداد متسامية كذلك.
في المقابل، يمكن لدالة جبرية لعدة متغيرات أن تعطي قيمة جبرية إذا طبقنا عليها أعدادا متسامية، عندما لا تكون تلك الأعداد مستقلة جبريا.
مثلا، العددان و متساميان، ولكن ليس متساميا. لا نعرف طبيعة ، ولكن نحن متأكدون من أن أحد العددين و متسام بالضرورة. بشكل عام: من أجل عددين متسامين a و b، فسيكون على الأقل أحد العددين ab و a+b متساميا. للتأكد من ذلك، نعتبر الحدودية . إذا كان ab و a+b جبريين معا، فستكون هذه الحدودية بمعاملات جبرية، وبما أن الأعداد الجبرية تكون جسما جبريا مغلقا، فهذا يستلزم أن a و b حلي المعادلة عددان جبريان، وهذا تناقض. وبالتالي أحد العددين ab و a+b على الأقل متسام.
مسائل مفتوحة
من بين الأعداد التي لا نعرف ما إذا كانت متسامية أم لا:
, , , , , ,
ثابتة أويلر-ماسكروني والتي لا نعرف ما إذا كانت لاجذرية.
جميع أعداد ليوفيل هي أعداد متسامية، ولكن ليست جميع الأعداد المتسامية هي أعداد ليوفيل. يجب على حدود كل عدد لليوفيل، عند تفكيكه إلى كسور مستمرة، ألا تكون قابلة للحصر. إذن باستعمال برهان التعداد، يمكن أن نبين وجود أعداد متسامية أخرى غير أعداد ليوفيل. باستعمال التفكيك إلى كسور مستمرة للعدد e سنجد أنه ليس عددا لليوفيل. برهن كرت مالر سنة 1953 أن العدد e ليس عددا لليوفيل. وتظنن كذلك أن جميع الكسور المستمرة والتي حدودها محصورة وليست دورية ابتداء من رتبة معينة، هي أعداد متسامية.
يمكن استعمال طريقة ممثالة، مختلفة عن عن المقاربة الأصلية لـ (لندمان)، للبرهنة على أن e عدد متسام. زيادة على ذلك، تلعب بعض التقديرات وبعض خصائص الحدوديات المتماثلة دورا حيويا في البرهان.