جبر هوپف
جبر هوپف Hopf algebra هو أحد فروع الجبر التجريدي، مسمى على اسم هاينز هوپف. و له استخدامات عدة ضمن نظريات ميكانيكا الكم.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
أمثلة
تعتمد على | Comultiplication | Counit | Antipode | Commutative | Cocommutative | ملاحظات | |
---|---|---|---|---|---|---|---|
group algebra KG | group G | Δ(g) = g ⊗ g for all g in G | ε(g) = 1 for all g in G | S(g) = g−1 for all g in G | if and only if G is abelian | yes | |
functions f from a finite[1] group to K, KG (with pointwise addition and multiplication) | finite group G | Δ(f)(x,y) = f(xy) | ε(f) = f(1G) | S(f)(x) = f(x−1) | yes | if and only if G is commutative | |
Representative functions on a compact group | compact group G | Δ(f)(x,y) = f(xy) | ε(f) = f(1G) | S(f)(x) = f(x−1) | yes | if and only if G is commutative | Conversely, every commutative involutive reduced Hopf algebra over C with a finite Haar integral arises in this way, giving one formulation of Tannaka–Krein duality.[2] |
Regular functions on an algebraic group | Δ(f)(x,y) = f(xy) | ε(f) = f(1G) | S(f)(x) = f(x−1) | yes | if and only if G is commutative | Conversely, every commutative Hopf algebra over a field arises from a group scheme in this way, giving an antiequivalence of categories.[3] | |
Tensor algebra T(V) | vector space V | Δ(x) = x ⊗ 1 + 1 ⊗ x, x in V, Δ(1) = 1 ⊗ 1 | ε(x) = 0 | S(x) = −x for all x in 'T1(V) (and extended to higher tensor powers) | If and only if dim(V)=0,1 | yes | symmetric algebra and exterior algebra (which are quotients of the tensor algebra) are also Hopf algebras with this definition of the comultiplication, counit and antipode |
Universal enveloping algebra U(g) | Lie algebra g | Δ(x) = x ⊗ 1 + 1 ⊗ x for every x in g (this rule is compatible with commutators and can therefore be uniquely extended to all of U) | ε(x) = 0 for all x in g (again, extended to U) | S(x) = −x | if and only if g is abelian | yes | |
Sweedler's Hopf algebra H=K[c, x]/c2 = 1, x2 = 0 and xc = −cx. | K is a field with characteristic different from 2 | Δ(c) = c ⊗ c, Δ(x) = c ⊗ x + x ⊗ 1, Δ(1) = 1 ⊗ 1 | ε(c) = 1 and ε(x) = 0 | S(c) = c−1 = c and S(x) = −cx | no | no | The underlying vector space is generated by {1, c, x, cx} and thus has dimension 4. This is the smallest example of a Hopf algebra that is both non-commutative and non-cocommutative. |
ring of symmetric functions[4] | in terms of complete homogeneous symmetric functions hk (k ≥ 1):
Δ(hk) = 1 ⊗ hk + h1 ⊗ hk−1 + ... + hk−1 ⊗ h1 + hk ⊗ 1. |
ε(hk) = 0 | S(hk) = (−1)k ek | yes | yes |
Note that functions on a finite group can be identified with the group ring, though these are more naturally thought of as dual – the group ring consists of finite sums of elements, and thus pairs with functions on the group by evaluating the function on the summed elements.
انظر أيضاً
- Quasitriangular Hopf algebra
- Algebra/set analogy
- Representation theory of Hopf algebras
- Ribbon Hopf algebra
- Superalgebra
- Supergroup
- Anyonic Lie algebra
- Sweedler's Hopf algebra
- Hopf algebra of permutations
- Milnor–Moore theorem
الهامش
- ^ The finiteness of G implies that KG ⊗ KG is naturally isomorphic to KGxG. This is used in the above formula for the comultiplication. For infinite groups G, KG ⊗ KG is a proper subset of KGxG. In this case the space of functions with finite support can be endowed with a Hopf algebra structure.
- ^ Hochschild, G (1965), Structure of Lie groups, Holden-Day, pp. 14–32
- ^ Jantzen, Jens Carsten (2003), Representations of algebraic groups, Mathematical Surveys and Monographs, 107 (2nd ed.), Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3527-2, section 2.3
- ^ See Michiel Hazewinkel, Symmetric Functions, Noncommutative Symmetric Functions, and Quasisymmetric Functions, Acta Applicandae Mathematica, January 2003, Volume 75, Issue 1-3, pp 55–83