النظريات الأساسية في الدارات
يمكن استخدام كل من قانوني كرشوف وقانون أوم في تحليل جميع الدارات الكهربائية. لكن ذلك قد يكون صعبا في كثير من الحالات، لذلك فإننا سنتناول بعض النظريات التي تستخدم في تسهيل تحليل الدارات الكهربائية.، وذلك في الحالات الخاصة بدارات التيار المستمر.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
مبدأ الانضمام Superposition Theorem
وينص على ما يلي:
إن التيار (أو الفلطية) في فرع ما والناجم عن عدة منابع مستقلة متواقتة التأثير في شبكة خطية، يساوي مجموع التيارات (أو الفلطيات) الناتجة في هذا الفرع عن كل من المنابع على حدة.
مثال:لنحسب التيار المبين في الدارة التالية:
في الدارة منبعان، منبع للتيار ومنبع للفلطية. سنقوم بحساب التيار عندما يكون منبع التيار مفصولا، ثم نقوم بحسابه عندما يكون منبع الفلطية مفصولا، وبعد ذلك نقوم بجمع النتيجتين، فنحصل على التيار الفعلي.
ملاحظة: عند حذف منبع تيار نستعيض عنه بدارة مفتوحة، بينما نستعيض عن منبع الفلطية بدارة مغلقة.
1.التيار الناجم عن منبع الفلطية فقط: بتطبيق قانون كرشوف للفلطية على الحلقة اليسرى من الدارة الموضحة في الشكل نجد: خطأ رياضيات (خطأ في الصيغة): {\displaystyle 1_0 – 5I_1 -10 I_1 = 0\,} ومنه نجد:
2.التيار الناجم عن منبع التيار فقط: لقد حصلنا على دارة مقاومة تفرعية، ومن أجل الحصول على نقوم بتطبيق قانون تجزئة التيار حيث:
وبالتالي: [أضفنا إشارة ناقص لأن تيارنا يعاكس جهة التيار الذي ينطبق عليه قانون تجزئة التيار (لاحظ أنه يعاكس جهة تيار المنبع: التيار الأساسي) ] أي يكون:
و"بانضمام" النتيجتين اللتين حصلنا عليهما في 1 و2 يكون:
نظرية تيفنن Thevenin's Theorem
تتيح هذه النظرية استبدال أية مجموعة ثابتة من المولدات والمقاومات الموصولة بثنائي قطب (الحمل الموصول بين A وB) بمنبع فلطية، فتختزل الدارة الحالية إلى العنصر المراد دراسته بشكل منفصل، ومنبع فلطية يكافئ بقية الدارة: قوته المحركة الكهربائية وموصول مع مقاومة ، تربط معه على التسلسل، تفيد هذه النظرية في تبسيط دراسة الدارات المعقدة على نحو كبير.
لتطبيق هذه النظرية نتبع الخطوات التالية: 1.نحدد العنصر المراد دراسته. 2.نفصل العنصر المراد دراسته من الدارة، فيترك مكانه نقطتين A وB وتكون بينهما الدارة مفتوحة. 3.نقوم بحساب فرق الكمون بين النقطتين، والذي سيمثل ، وذلك باستخدام قوانين كرشوف أو إحدى النظريات. 4.نقوم بحساب المقاومة المكافئة بعد إلغاء جميع المنابع. 5.نقوم بتركيب دارة تيفنن المكافئة والمكوّنة من الحمل المطلوب دراسته موصولا على التسلسل مع المنبع والمقاومة .
نظرية نورتون
تشبه نظرية نورتون إلى حد بعيد نظرية تيفنن، إلا أنها بدلا من أن تستعيض عن بقية أجزاء الدارة بمولد ومقاومة، تستعيض عنها بمولد تيار توصل معه على التفرع ناقلية.
العلاقة بين دارتي نورتون وتيفنن
سترى أمثلة عملية على هاتين النظريتين في المحاضرة القادمة إن شاء الله تعالى.
نظرية النقل الأعظمي للاستطاعة
تنص هذه النظرية على أن مقاومة الحمل في دارة ما تمتص استطاعة عظمى إذا كانت مساوية للمقاومة الداخلية للمنبع أي . يمكن التحقق من ذلك باستخدام القوانين التي تعرفنا عليها. فالتيار المار بالحمل يعطى بالعلاقة:
وبالتالي تكون الاستطاعة التي يسحبها الحمل:
نقوم باشتقاق العلاقة السابقة بالنسبة لـ ، فتكون الاستطاعة عظمى عندما: ، فنجد أن ذلك يكون عندما
نظرية ميلمان المباشرة
تكافئ مجموعة مكونة من n منبع فلطية مربوطة على التفرع منبع فلطية واحد بحيث يكون:
حيث و فلطية ومقاومة كل منبع من المنابع المذكورة
و R هي المقاومة المكافئة لمجموعة مقاومات المنابع مربوطة على التفرع وتعطى بالعلاقة:
نظرية ميلمان العكسية
تكافئ مجموعة مكونة من n منبع تيار مربوطة على التسلسل منبع تيار واحد بحيث يكون:
حيث و تيار وناقلية كل منبع من المنابع المذكورة,
وG الناقلية المكافئة لمجموعة ناقليات المنابع مربوطة على التسلسل وتعطى بالعلاقة:
خطأ رياضيات (خطأ في الصيغة): {\displaystyle G=\frac{1}{\sum _{k=1}^{n}{\frac{1}{G_{k}}}\,}
نظرية كينلي (التكافؤ نجمة – مثلث)
في بعض الحالات، نواجه أثناء تحليلنا للدارات عقدة توصل إليها ثلاثة أطراف تسمى النجمة. تسمح نظرية كينلي بتحويل هذه النجمة إلى مثلث، كما هو مبين في الشكل. لمعرفة مقاومات المثلث بدلالة مقاومة النجمة (أي للانتقال من اليمين إلى اليسار)، نستخدم العلاقات التالية:
أي المقاومة التي تصل بين عقدتين في المثلث هي مجموع الجداءات الثنائية غير المكررة لمقاومات النجمة مقسومة على المقاومة المتصلة بالعقدة المقابلة..
ولمعرفة مقاومات النجمة بدلالة مقاومة المثلث (أي للانتقال من اليسار إلى اليمين) نستخدم العلاقات التالية:
أي المقاومة المتصلة بعقدة ما، في نجمة، هي جداء المقاومتين المتصلتين بهذه العقدة في المثالث، مقسومة على مجموع مقاوماته [أي المثلث].
مثال: أوجد المقاومة المكافئة لمجموعة المقاومات الموصولة بين a وb. ثم احسب التيار المار في الدارة.
الحل: نقوم بتحويل النجمة abc إلى مثلث. فيكون
ومنه نجد أن:
وتصبح الدارة على النحو التالي:
كل من المقاومات التالية موصولة على التفرع: (30 و70) و(17.5 و12.5) و(35 و15). بضمّها وحسابها تصبح الدارة على النحو التالي:
وبالتالي تصبح المقاومة المكافئة بين ab:
خطأ رياضيات (وظيفة مجهولة): {\displaystyle R = \textup{(7.292 + 10.5) {\textbar}{\textbar} 21 = 9.632 }ohms\,}
وأصبح من الممكن إيجاد التيار i الذي يعطى بالعلاقة:
تمرين
احسب التيار في الدارة المبينة في الشكل أدناه باستخدام نظرية نورتون.
فكرة الحل: لا بد أولاً من إيجاد منبع التيار المكافئ للحمل الموصول بين A وB، وبعد ذلك يتم وصل هذا المنبع إلى الحمل، وتتم معرفة التيار .
من أجل إيجاد منبع التيار المكافئ، علينا أن نقوم بإيجاد المقاومة المكافئة، وذلك بفصل جميع منابع الدارة (حيث نقوم بفتح الدارة عند كل منبع تيار وقصرها عند كل منبع فلطية):
وبالتالي المقاومة المكافئة هي: .
الخطوة الثانية الآن هي إيجاد قيمة التيار المحرك الكهربائي للمنبع المكافئ للدارة والمار من A إلى B. من أجل ذلك، نقوم بوصل الدارة بين هاتين النقطتين. ونقوم بعدها بحساب التيار بإحدى الطرق الممكنة.
من أجل حساب سنقوم بتطبيق نظرية الانضمام، حيث سنقوم بالإبقاء على منبع واحد فقط، وحساب في هذه الحالة، ومن ثم يكون التيار المطلوب هو مجموع النتائج التي حصلنا عليها:
التيار الخارج من المنبع 3A يتفرع إلى فرعين: فرع يمر في المقاومات، وفرع آخر يمر في AB. وبما أن المقاومة فيالفرع الأخير معدومة، فإن التيار بأكمله يمر عبر المقاومة الصفرية أي:
يمكننا في هذه الحالة استخدام قانون مجزئ التيار، فالتيار الخارج من المنبع يتفرع إلى فرعين. نلاحظ أن القانون يعطينا قيمة التيار في الفرع AB والذي يعاكس جهة ، لذلك لا بد من وضع إشارة سالبة. أي
بتطبيق قانون أوم نجد بسهولة أن:
إذاً يمكننا أن نقول الآن وحسب نظرية الانضمام أن التيار هو:
هكذا نكون قد أوجدنا قيمة كل من المقاومة والتيار المحرك للمنبع، بقي فقط أن نقوم بوصل هذا المنبع مع الحمل AB ودراسة تأثيره.
الآن، ومن أجل حساب نقوم باستخدام قانون مجزئ التيار، فنجد: