التماثل في الرياضيات

التماثل في الرياضيات يمكن كتابة عناصر التماثل في البلورة في هيئة قانون يعرف باسم قانون التماثل الكامل Complete Symmetry formula ، وذلك باستعمال الرموز التماثلية وهي: 2 ، 3 ، 4 ، 6 ، للمحاور الدورانية الثنائية والثلاثية والرباعية والسداسية التماثل على التوالي و 1 ، 2 ، 3 ، 4 ، 6 للمحاور الانقلابية الأحادية والثنائية والثلاثية والرباعية والسداسية التماثل على التوالي ن م لمستوى التماثل ، ن لمركز التماثل. فاذا وجد محور دوران تماثلي عموديا على مستوى تماثل فإن القانون يكتب هكذا 2/م أو 3/م ، الخ ... حسب درجة المحور التماثل ، ويقرأ اثنين على ميم ، وثلاثة على ميم ، الخ .. أما إذا كان المحور التماثلي يمر في المستوى التماثلي وليس عموديا عليه ، فإن القانون يكتب 2م أو 3 م الخ .. حسب درجة المحور التماثلي. أما في حالة وجود مستويان تماثليان أحدهما عمودي على المحور التماثلي والآخر يمر بالمحور فإن القانون يكتب 2/م م أو 3/م م ، الخ. وفي حالة وجود أكثر من محور تماثل واحد أو مستوى تماثل واحد فإن عدد المحاور أو المستويات يكتب في لاركب الأعلى الشمالي لرمز المحور أو المستوى هكذا 32 ، م3 ، 4/م 3 أي ثلاثة محاور ثنائية التماثل ، ثلاث مستويات تماثلية ، ثلاثة محاور رباعية التماثل عمودية على ثلاث مستويات تماثلية ، على التوالي ( لاحظ أن القانون الأخير لا يعني ثلاثة محاول رباعية التماثل عمودية على مستوى تماثل واحد ، إذ أن 4/م تدل على مجموعة غير مجزأة).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

علاقات متماثلة

وظائف متناظرة

في الجبر

في الهندسة

تناظر معادلات التفاضلية

Randomness

Skew-symmetry

إنحراف - التماثل

التماثل في نظرية الاحتمالات

انظر أيضاً

المصادر


قائمة المراجع

  • Hermann Weyl, Symmetry. Reprint of the 1952 original. Princeton Science Library. Princeton University Press, Princeton, NJ, 1989. viii+168 pp. ISBN 0-691-02374-3
  • Mark Ronan, Symmetry and the Monster, Oxford University Press, 2006. ISBN 978-0-19-280723-6 (Concise introduction for lay reader)
  • Marcus du Sautoy, Finding Moonshine: a Mathematician's Journey through Symmetry, Fourth Estate, 2009