جذر تربيعي

(تم التحويل من Square root)

في الرياضيات، الجذر التربيعي لرقم (X) هو الرقم (Y) الذي إذا ضرب في نفسه ينتج الرقم (X) . مثال:

, .

الجذر التربيعي للعدد المربع الكامل. 5×5 = 25 = 25. نقول: 5×5 هي عملية تربيع للعدد 5

لا يوجد جذر تربيعي للأعداد السالبة ضمن مجموعة الأعداد الحقيقية.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

الخصائص

مخطط تابع الجذر التربيعي f(x) = √x,حيث يأخذ شكل نصف قطع مكافئ.
  • تابع الجذر التربيعي ذو الشكل f(x) = √x هو تابع يربط مجموعة الأعداد الحقيقية الموجبة R+ ∪ 0 بنفسها، ومثله مثل جميع التوابع الأخرى فإنه ينتج دائماً قيمة فريدة.
  • من أجل جميع أي عدد حقيقي x
  • من أجل أي عددين حقيقين موجبين x ، y يتحقق
and
  • يعطى مشتق تابع الجذر التربيعي بالعلاقة:


جذور الأعداد الطبيعية

الأرقام التي لها جذر تربيعي في مجموعة الأعداد الصحيحة بالتسلسل:

  • 1=1 أول رقم له جذر تربيعي
  • 1 + 3 = 4 ثاني رقم له جذر تربيعي
  • 1 + 3 + 5 = 9 ثالث رقم له جذر تربيعي
  • 1 + 3 + 5 + 7 = 16 رابع رقم له جذر تربيعي
  • 1 + 3 + 5 + 7 + 9 = 25 خامس رقم له جذر تربيعي
  • 1 + 3 + 5 + 7 + 9 + 11 = 36 سادس رقم له جذر تربيعي
  • 1 + 3 + 5 + 7 + 9 + 11 + 13 =49 سابع عدد له جذر تربيعي
  • و هكذا بالتسلسل [1]

جبر

مصادر