لغة التظليل عالية المستوى

(تم التحويل من High-Level Shader Language)
A scene containing several different 2D HLSL shaders. Distortion of the statue is achieved purely physically, while the texture of the rectangular frame beside it is based on color intensity. The square in the background has been transformed and rotated. The partial transparency and reflection of the water in the foreground are added by a shader applied finally to the entire scene.

The High-Level Shader Language[1] or High-Level Shading Language[2] (HLSL) is a proprietary shading language developed by Microsoft for the Direct3D 9 API to augment the shader assembly language, and went on to become the required shading language for the unified shader model of Direct3D 10 and higher.

HLSL is analogous to the GLSL shading language used with the OpenGL standard. It is very similar to the Nvidia Cg shading language, as it was developed alongside it. Early versions of the two languages were considered identical, only marketed differently.[3] HLSL shaders can enable profound speed and detail increases as well as many special effects in both 2D and 3D computer graphics.[بحاجة لمصدر]

HLSL programs come in six forms: pixel shaders (fragment in GLSL), vertex shaders, geometry shaders, compute shaders, tessellation shaders (Hull and Domain shaders), and ray tracing shaders (Ray Generation Shaders, Intersection Shaders, Any Hit/Closest Hit/Miss Shaders). A vertex shader is executed for each vertex that is submitted by the application, and is primarily responsible for transforming the vertex from object space to view space, generating texture coordinates, and calculating lighting coefficients such as the vertex's normal, tangent, and bitangent vectors. When a group of vertices (normally 3, to form a triangle) come through the vertex shader, their output position is interpolated to form pixels within its area; this process is known as rasterization.

Optionally, an application using a Direct3D 10/11/12 interface and Direct3D 10/11/12 hardware may also specify a geometry shader. This shader takes as its input some vertices of a primitive (triangle/line/point) and uses this data to generate/degenerate (or tessellate) additional primitives or to change the type of primitives, which are each then sent to the rasterizer.

D3D11.3 and D3D12 introduced Shader Model 5.1[4] and later 6.0.[5]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shader model comparison

GPUs listed are the hardware that first supported the given specifications. Manufacturers generally support all lower shader models through drivers. Note that games may claim to require a certain DirectX version, but don't necessarily require a GPU conforming to the full specification of that version, as developers can use a higher DirectX API version to target lower-Direct3D-spec hardware; for instance DirectX 9 exposes features of DirectX7-level hardware that DirectX7 did not, targeting their fixed-function T&L pipeline.

Pixel shader comparison

Pixel shader version 1.0 1.1 1.2

1.3[6]

1.4[6] 2.0[6][7] 2.0a[6][7][8] 2.0b[6][7][9] 3.0[6][10] 4.0[11]4.1[12]

5.0[13]

Dependent texture limit 4 4 4 6 8 Unlimited 8 Unlimited Unlimited
Texture instruction limit 4 4 4 6 * 2 32 Unlimited Unlimited Unlimited Unlimited
Arithmetic instruction limit 8 8 8 8 * 2 64 Unlimited Unlimited Unlimited Unlimited
Position register لا لا لا لا لا لا لا نعم نعم
Instruction slots 8 8 + 4 8 + 4 (8 + 6) * 2 64 + 32 512 512 ≥ 512 ≥ 65536
Executed instructions 8 8 + 4 8 + 4 (8 + 6) * 2 64 + 32 512 512 65536 Unlimited
Texture indirections 4 4 4 4 4 Unlimited 4 Unlimited Unlimited
Interpolated registers 2 + 4 2 + 4 2 + 4 2 + 6 2 + 8 2 + 8 2 + 8 10 32
Instruction predication لا لا لا لا لا نعم لا نعم لا
Index input registers لا لا لا لا لا لا لا نعم نعم
Temp registers 2 2 + 4 3 + 4 6 12 to 32 22 32 32 4096
Constant registers 8 8 8 8 32 32 32 224 16×4096
Arbitrary swizzling لا لا لا لا لا نعم لا نعم نعم
Gradient instructions لا لا لا لا لا نعم لا نعم نعم
Loop count register لا لا لا لا لا لا لا نعم نعم
Face register (2-sided lighting) لا لا لا لا لا لا نعم نعم نعم
Dynamic flow control لا لا لا لا لا لا لا نعم (24) نعم (64)
Bitwise Operators لا لا لا لا لا لا لا لا نعم
Native Integers لا لا لا لا لا لا لا لا نعم
  • PS 1.0 — Unreleased 3dfx Rampage, DirectX 8
  • PS 1.1GeForce 3, DirectX 8
  • PS 1.23Dlabs Wildcat VP, DirectX 8.1
  • PS 1.3GeForce 4 Ti, DirectX 8.1
  • PS 1.4Radeon 8500-9250, Matrox Parhelia, DirectX 8.1
  • Shader Model 2.0Radeon 9500-9800/X300-X600, DirectX 9
  • Shader Model 2.0aGeForce FX/PCX-optimized model, DirectX 9.0a
  • Shader Model 2.0bRadeon X700-X850 shader model, DirectX 9.0b
  • Shader Model 3.0Radeon X1000 and GeForce 6, DirectX 9.0c
  • Shader Model 4.0Radeon HD 2000 and GeForce 8, DirectX 10
  • Shader Model 4.1Radeon HD 3000 and GeForce 200, DirectX 10.1
  • Shader Model 5.0Radeon HD 5000 and GeForce 400, DirectX 11
  • Shader Model 5.1GCN 1+, Fermi+, DirectX 12 (11_0+) with WDDM 2.0
  • Shader Model 6.0 — GCN 1+, Kepler+, DirectX 12 (11_0+) with WDDM 2.1
  • Shader Model 6.1 — GCN 1+, Kepler+, DirectX 12 (11_0+) with WDDM 2.3
  • Shader Model 6.2 — GCN 1+, Kepler+, DirectX 12 (11_0+) with WDDM 2.4
  • Shader Model 6.3 — GCN 1+, Kepler+, DirectX 12 (11_0+) with WDDM 2.5
  • Shader Model 6.4 — GCN 1+, Kepler+, Skylake+, DirectX 12 (11_0+) with WDDM 2.6
  • Shader Model 6.5 — GCN 1+, Kepler+, Skylake+, DirectX 12 (11_0+) with WDDM 2.7
  • Shader Model 6.6 — GCN 4+, Maxwell+, DirectX 12 (11_0+) with WDDM 3.0
  • Shader Model 6.7 — GCN 4+, Maxwell+, DirectX 12 (12_0+) with WDDM 3.1


"32 + 64" for Executed Instructions means "32 texture instructions and 64 arithmetic instructions."

Vertex shader comparison

Vertex shader version 1.0 1.1[14] 2.0[7][14][8] 2.0a[7][14][8] 3.0[10][14] 4.0[11]
4.1[12]
5.0[13]
# of instruction slots 128 128 256 256 ≥ 512 ≥ 65536
Max # of instructions executed 128 128 1024 65536 65536 Unlimited
Instruction predication لا لا لا نعم نعم نعم
Temp registers 12 12 12 16 32 4096
# constant registers ≥ 96 ≥ 96 ≥ 256 256 ≥ 256 16×4096
Address register لا نعم نعم نعم نعم نعم
Static flow control لا لا نعم نعم نعم نعم
Dynamic flow control لا لا لا نعم نعم نعم
Dynamic flow control depth {{N/A}} {{N/A}} {{N/A}} 24 24 64
Vertex texture fetch لا لا لا لا نعم نعم
# of texture samplers {{N/A}} {{N/A}} {{N/A}} {{N/A}} 4 128
Geometry instancing support لا لا لا لا نعم نعم
Bitwise operators لا لا لا لا لا نعم
Native integers لا لا لا لا لا نعم

See also

Footnotes

  1. ^ "Writing HLSL Shaders in Direct3D 9". Microsoft Docs. Retrieved February 22, 2021.
  2. ^ "High-level shader language (HLSL)". Microsoft Docs. Retrieved February 22, 2021.
  3. ^ "Fusion Industries :: Cg and HLSL FAQ ::". August 24, 2012. Archived from the original on August 24, 2012.
  4. ^ "Shader Model 5.1 Objects". Microsoft Docs. Retrieved February 22, 2021.
  5. ^ "HLSL Shader Model 6.0". Microsoft Docs. Retrieved February 22, 2021.
  6. ^ أ ب ت ث ج ح "Pixel Shader Differences". Microsoft Docs. Retrieved February 22, 2021.
  7. ^ أ ب ت ث ج Peeper, Craig; Mitchell, Jason L. (July 2003). "Introduction to the DirectX 9 High-Level Shader Language". Microsoft Docs. Retrieved February 22, 2021.
  8. ^ أ ب ت Shimpi, Anand Lal. "NVIDIA Introduces GeForce FX (NV30)". AnandTech. Retrieved February 22, 2021.
  9. ^ Wilson, Derek. "ATI Radeon X800 Pro and XT Platinum Edition: R420 Arrives". AnandTech. Retrieved February 22, 2021.
  10. ^ أ ب Shader Model 3.0, Ashu Rege, NVIDIA Developer Technology Group, 2004.
  11. ^ أ ب The Direct3D 10 System, David Blythe, Microsoft Corporation, 2006.
  12. ^ أ ب "Registers - ps_4_1". Microsoft Docs. Retrieved February 22, 2021.
  13. ^ أ ب "Registers - ps_5_0". Microsoft Docs. Retrieved February 22, 2021.
  14. ^ أ ب ت ث "Vertex Shader Differences". Microsoft Docs. Retrieved February 22, 2021.

External links