In mathematics , especially functional analysis , a Fréchet algebra , named after Maurice René Fréchet , is an associative algebra
A
𝐴
{\displaystyle{\displaystyle A}}
over the real or complex numbers that at the same time is also a (locally convex ) Fréchet space . The multiplication operation
(
a
,
b
)
↦
a
*
b
maps-to
𝑎
𝑏
𝑎
𝑏
{\displaystyle{\displaystyle(a,b)\mapsto a*b}}
for
a
,
b
∈
A
𝑎
𝑏
𝐴
{\displaystyle{\displaystyle a,b\in A}}
is required to be jointly continuous .
If
{
∥
⋅
∥
n
}
n
=
0
∞
superscript
subscript
fragments
{
parallel-to
⋅
subscript
parallel-to
𝑛
}
𝑛
0
{\displaystyle{\displaystyle\{\|\cdot\|_{n}\}_{n=0}^{\infty}}}
is an increasing family[أ] of seminorms for
the topology of
A
𝐴
{\displaystyle{\displaystyle A}}
, the joint continuity of multiplication is equivalent to there being a constant
C
n
>
0
subscript
𝐶
𝑛
0
{\displaystyle{\displaystyle C_{n}>0}}
and integer
m
≥
n
𝑚
𝑛
{\displaystyle{\displaystyle m\geq n}}
for each
n
𝑛
{\displaystyle{\displaystyle n}}
such that
∥
a
b
∥
n
≤
C
n
∥
a
∥
m
∥
b
∥
m
subscript
norm
𝑎
𝑏
𝑛
subscript
𝐶
𝑛
subscript
norm
𝑎
𝑚
subscript
norm
𝑏
𝑚
{\displaystyle{\displaystyle\left\|ab\right\|_{n}\leq C_{n}\left\|a\right\|_{m%
}\left\|b\right\|_{m}}}
for all
a
,
b
∈
A
𝑎
𝑏
𝐴
{\displaystyle{\displaystyle a,b\in A}}
.[ب] Fréchet algebras are also called B 0 -algebras.
A Fréchet algebra is
m
𝑚
{\displaystyle{\displaystyle m}}
-convex if there exists such a family of semi-norms for which
m
=
n
𝑚
𝑛
{\displaystyle{\displaystyle m=n}}
. In that case, by rescaling the seminorms, we may also take
C
n
=
1
subscript
𝐶
𝑛
1
{\displaystyle{\displaystyle C_{n}=1}}
for each
n
𝑛
{\displaystyle{\displaystyle n}}
and the seminorms are said to be submultiplicative :
∥
a
b
∥
n
≤
∥
a
∥
n
∥
b
∥
n
subscript
norm
𝑎
𝑏
𝑛
subscript
norm
𝑎
𝑛
subscript
norm
𝑏
𝑛
{\displaystyle{\displaystyle\|ab\|_{n}\leq\|a\|_{n}\|b\|_{n}}}
for all
a
,
b
∈
A
.
𝑎
𝑏
𝐴
{\displaystyle{\displaystyle a,b\in A.}}
[ت]
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebras may also be called Fréchet algebras.[2]
A Fréchet algebra may or may not have an identity element
1
A
subscript
1
𝐴
{\displaystyle{\displaystyle 1_{A}}}
. If
A
𝐴
{\displaystyle{\displaystyle A}}
is unital , we do not require that
∥
1
A
∥
n
=
1
,
subscript
norm
subscript
1
𝐴
𝑛
1
{\displaystyle{\displaystyle\|1_{A}\|_{n}=1,}}
as is often done for Banach algebras .
Properties
Continuity of multiplication. Multiplication is separately continuous if
a
k
b
→
a
b
→
subscript
𝑎
𝑘
𝑏
𝑎
𝑏
{\displaystyle{\displaystyle a_{k}b\to ab}}
and
b
a
k
→
b
a
→
𝑏
subscript
𝑎
𝑘
𝑏
𝑎
{\displaystyle{\displaystyle ba_{k}\to ba}}
for every
a
,
b
∈
A
𝑎
𝑏
𝐴
{\displaystyle{\displaystyle a,b\in A}}
and sequence
a
k
→
a
→
subscript
𝑎
𝑘
𝑎
{\displaystyle{\displaystyle a_{k}\to a}}
converging in the Fréchet topology of
A
𝐴
{\displaystyle{\displaystyle A}}
. Multiplication is jointly continuous if
a
k
→
a
→
subscript
𝑎
𝑘
𝑎
{\displaystyle{\displaystyle a_{k}\to a}}
and
b
k
→
b
→
subscript
𝑏
𝑘
𝑏
{\displaystyle{\displaystyle b_{k}\to b}}
imply
a
k
b
k
→
a
b
→
subscript
𝑎
𝑘
subscript
𝑏
𝑘
𝑎
𝑏
{\displaystyle{\displaystyle a_{k}b_{k}\to ab}}
. Joint continuity of multiplication is part of the definition of a Fréchet algebra. For a Fréchet space with an algebra structure, if the multiplication is separately continuous, then it is automatically jointly continuous.[3]
Group of invertible elements. If
i
n
v
A
𝑖
𝑛
𝑣
𝐴
{\displaystyle{\displaystyle invA}}
is the set of invertible elements of
A
𝐴
{\displaystyle{\displaystyle A}}
, then the inverse map
{
i
n
v
A
→
i
n
v
A
u
↦
u
-
1
cases
→
𝑖
𝑛
𝑣
𝐴
𝑖
𝑛
𝑣
𝐴
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
maps-to
𝑢
superscript
𝑢
1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
{\displaystyle{\begin{cases}invA\to invA\\
u\mapsto u^{-1}\end{cases}}}
is continuous if and only if
i
n
v
A
𝑖
𝑛
𝑣
𝐴
{\displaystyle{\displaystyle invA}}
is a
G
δ
subscript
𝐺
𝛿
{\displaystyle{\displaystyle G_{\delta}}}
set . Unlike for Banach algebras ,
i
n
v
A
𝑖
𝑛
𝑣
𝐴
{\displaystyle{\displaystyle invA}}
may not be an open set . If
i
n
v
A
𝑖
𝑛
𝑣
𝐴
{\displaystyle{\displaystyle invA}}
is open, then
A
𝐴
{\displaystyle{\displaystyle A}}
is called a
Q
𝑄
{\displaystyle{\displaystyle Q}}
-algebra . (If
A
𝐴
{\displaystyle{\displaystyle A}}
happens to be non-unital , then we may adjoin a unit to
A
𝐴
{\displaystyle{\displaystyle A}}
[ث] and work with
i
n
v
A
+
𝑖
𝑛
𝑣
superscript
𝐴
{\displaystyle{\displaystyle invA^{+}}}
, or the set of quasi invertibles[ج] may take the place of
i
n
v
A
𝑖
𝑛
𝑣
𝐴
{\displaystyle{\displaystyle invA}}
.)
Conditions for
m
𝑚
{\displaystyle{\displaystyle m}}
-convexity. A Fréchet algebra is
m
𝑚
{\displaystyle{\displaystyle m}}
-convex if and only if for every , if and only if for one , increasing family
{
∥
⋅
∥
n
}
n
=
0
∞
superscript
subscript
fragments
{
parallel-to
⋅
subscript
parallel-to
𝑛
}
𝑛
0
{\displaystyle{\displaystyle\{\|\cdot\|_{n}\}_{n=0}^{\infty}}}
of seminorms which topologize
A
𝐴
{\displaystyle{\displaystyle A}}
, for each
m
∈
ℕ
𝑚
ℕ
{\displaystyle{\displaystyle m\in\mathbb{N}}}
there exists
p
≥
m
𝑝
𝑚
{\displaystyle{\displaystyle p\geq m}}
and
C
m
>
0
subscript
𝐶
𝑚
0
{\displaystyle{\displaystyle C_{m}>0}}
such that
∥
a
1
a
2
⋯
a
n
∥
m
≤
C
m
n
∥
a
1
∥
p
∥
a
2
∥
p
⋯
∥
a
n
∥
p
,
subscript
norm
subscript
𝑎
1
subscript
𝑎
2
⋯
subscript
𝑎
𝑛
𝑚
superscript
subscript
𝐶
𝑚
𝑛
subscript
norm
subscript
𝑎
1
𝑝
subscript
norm
subscript
𝑎
2
𝑝
⋯
subscript
norm
subscript
𝑎
𝑛
𝑝
{\displaystyle\|a_{1}a_{2}\cdots a_{n}\|_{m}\leq C_{m}^{n}\|a_{1}\|_{p}\|a_{2}%
\|_{p}\cdots\|a_{n}\|_{p},}
for all
a
1
,
a
2
,
…
,
a
n
∈
A
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑛
𝐴
{\displaystyle{\displaystyle a_{1},a_{2},\dots,a_{n}\in A}}
and
n
∈
ℕ
𝑛
ℕ
{\displaystyle{\displaystyle n\in\mathbb{N}}}
. A commutative Fréchet
Q
𝑄
{\displaystyle{\displaystyle Q}}
-algebra is
m
𝑚
{\displaystyle{\displaystyle m}}
-convex, but there exist examples of non-commutative Fréchet
Q
𝑄
{\displaystyle{\displaystyle Q}}
-algebras which are not
m
𝑚
{\displaystyle{\displaystyle m}}
-convex.
Properties of
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebras. A Fréchet algebra is
m
𝑚
{\displaystyle{\displaystyle m}}
-convex if and only if it is a countable projective limit of Banach algebras. An element of
A
𝐴
{\displaystyle{\displaystyle A}}
is invertible if and only if its image in each Banach algebra of the projective limit is invertible.[ح] [10]
أمثلة
Zero multiplication. If
E
𝐸
{\displaystyle{\displaystyle E}}
is any Fréchet space, we can make a Fréchet algebra structure by setting
e
*
f
=
0
𝑒
𝑓
0
{\displaystyle{\displaystyle e*f=0}}
for all
e
,
f
∈
E
𝑒
𝑓
𝐸
{\displaystyle{\displaystyle e,f\in E}}
.
Smooth functions on the circle. Let
S
1
superscript
𝑆
1
{\displaystyle{\displaystyle S^{1}}}
be the 1-sphere . This is a 1-dimensional compact differentiable manifold , with no boundary . Let
A
=
C
∞
(
S
1
)
𝐴
superscript
𝐶
superscript
𝑆
1
{\displaystyle{\displaystyle A=C^{\infty}(S^{1})}}
be the set of infinitely differentiable complex-valued functions on
S
1
superscript
𝑆
1
{\displaystyle{\displaystyle S^{1}}}
. This is clearly an algebra over the complex numbers, for pointwise multiplication. (Use the product rule for differentiation .) It is commutative, and the constant function
1
1
{\displaystyle{\displaystyle 1}}
acts as an identity. Define a countable set of seminorms on
A
𝐴
{\displaystyle{\displaystyle A}}
by
∥
φ
∥
n
=
∥
φ
(
n
)
∥
∞
,
φ
∈
A
,
formulae-sequence
subscript
norm
𝜑
𝑛
subscript
norm
superscript
𝜑
𝑛
𝜑
𝐴
{\displaystyle\left\|\varphi\right\|_{n}=\left\|\varphi^{(n)}\right\|_{\infty}%
,\qquad\varphi\in A,}
where
∥
φ
(
n
)
∥
∞
=
sup
x
∈
S
1
|
φ
(
n
)
(
x
)
|
subscript
norm
superscript
𝜑
𝑛
subscript
supremum
𝑥
superscript
𝑆
1
superscript
𝜑
𝑛
𝑥
{\displaystyle\left\|\varphi^{(n)}\right\|_{\infty}=\sup_{x\in{S^{1}}}\left|%
\varphi^{(n)}(x)\right|}
denotes the supremum of the absolute value of the
n
𝑛
{\displaystyle{\displaystyle n}}
th derivative
φ
(
n
)
superscript
𝜑
𝑛
{\displaystyle{\displaystyle\varphi^{(n)}}}
.[خ] Then, by the product rule for differentiation, we have
∥
φ
ψ
∥
n
=
∥
∑
i
=
0
n
(
n
i
)
φ
(
i
)
ψ
(
n
-
i
)
∥
∞
≤
∑
i
=
0
n
(
n
i
)
∥
φ
∥
i
∥
ψ
∥
n
-
i
≤
∑
i
=
0
n
(
n
i
)
∥
φ
∥
n
′
∥
ψ
∥
n
′
=
2
n
∥
φ
∥
n
′
∥
ψ
∥
n
′
,
subscript
norm
𝜑
𝜓
𝑛
absent
subscript
norm
superscript
subscript
𝑖
0
𝑛
binomial
𝑛
𝑖
superscript
𝜑
𝑖
superscript
𝜓
𝑛
𝑖
missing-subexpression
absent
superscript
subscript
𝑖
0
𝑛
binomial
𝑛
𝑖
subscript
norm
𝜑
𝑖
subscript
norm
𝜓
𝑛
𝑖
missing-subexpression
absent
superscript
subscript
𝑖
0
𝑛
binomial
𝑛
𝑖
subscript
superscript
norm
𝜑
′
𝑛
subscript
superscript
norm
𝜓
′
𝑛
missing-subexpression
absent
superscript
2
𝑛
subscript
superscript
norm
𝜑
′
𝑛
subscript
superscript
norm
𝜓
′
𝑛
{\displaystyle{\begin{aligned} \displaystyle\|\varphi\psi\|_{n}&\displaystyle=%
\left\|\sum_{i=0}^{n}{n\choose i}\varphi^{(i)}\psi^{(n-i)}\right\|_{\infty}\\
&\displaystyle\leq\sum_{i=0}^{n}{n\choose i}\|\varphi\|_{i}\|\psi\|_{n-i}\\
&\displaystyle\leq\sum_{i=0}^{n}{n\choose i}\|\varphi\|^{\prime}_{n}\|\psi\|^{%
\prime}_{n}\\
&\displaystyle=2^{n}\|\varphi\|^{\prime}_{n}\|\psi\|^{\prime}_{n},\end{aligned%
}}}
where
(
n
i
)
=
n
!
i
!
(
n
-
i
)
!
,
binomial
𝑛
𝑖
𝑛
𝑖
𝑛
𝑖
{\displaystyle{n\choose i}={\frac{n!}{i!(n-i)!}},}
denotes the binomial coefficient and
∥
⋅
∥
n
′
=
max
k
≤
n
∥
⋅
∥
k
.
fragments
parallel-to
⋅
subscript
superscript
parallel-to
′
𝑛
subscript
𝑘
𝑛
parallel-to
⋅
subscript
parallel-to
𝑘
.
{\displaystyle\|\cdot\|^{\prime}_{n}=\max_{k\leq n}\|\cdot\|_{k}.}
The primed seminorms are submultiplicative after re-scaling by
C
n
=
2
n
subscript
𝐶
𝑛
superscript
2
𝑛
{\displaystyle{\displaystyle C_{n}=2^{n}}}
.
Sequences on
ℕ
ℕ
{\displaystyle{\displaystyle\mathbb{N}}}
. Let
ℂ
ℕ
superscript
ℂ
ℕ
{\displaystyle{\displaystyle\mathbb{C}^{\mathbb{N}}}}
be the space of complex-valued sequences on the natural numbers
ℕ
ℕ
{\displaystyle{\displaystyle\mathbb{N}}}
. Define an increasing family of seminorms on
ℂ
ℕ
superscript
ℂ
ℕ
{\displaystyle{\displaystyle\mathbb{C}^{\mathbb{N}}}}
by
∥
φ
∥
n
=
max
k
≤
n
|
φ
(
k
)
|
.
subscript
norm
𝜑
𝑛
subscript
𝑘
𝑛
𝜑
𝑘
{\displaystyle\|\varphi\|_{n}=\max_{k\leq n}|\varphi(k)|.}
With pointwise multiplication,
ℂ
ℕ
superscript
ℂ
ℕ
{\displaystyle{\displaystyle\mathbb{C}^{\mathbb{N}}}}
is a commutative Fréchet algebra. In fact, each seminorm is submultiplicative
∥
φ
ψ
∥
n
≤
∥
φ
∥
n
∥
ψ
∥
n
subscript
norm
𝜑
𝜓
𝑛
subscript
norm
𝜑
𝑛
subscript
norm
𝜓
𝑛
{\displaystyle{\displaystyle\|\varphi\psi\|_{n}\leq\|\varphi\|_{n}\|\psi\|_{n}}}
for
φ
,
ψ
∈
A
𝜑
𝜓
𝐴
{\displaystyle{\displaystyle\varphi,\psi\in A}}
. This
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebra is unital, since the constant sequence
1
(
k
)
=
1
,
k
∈
ℕ
formulae-sequence
1
𝑘
1
𝑘
ℕ
{\displaystyle{\displaystyle 1(k)=1,k\in\mathbb{N}}}
is in
A
𝐴
{\displaystyle{\displaystyle A}}
.
Equipped with the topology of uniform convergence on compact sets , and pointwise multiplication,
C
(
ℂ
)
𝐶
ℂ
{\displaystyle{\displaystyle C(\mathbb{C})}}
, the algebra of all continuous functions on the complex plane
ℂ
ℂ
{\displaystyle{\displaystyle\mathbb{C}}}
, or to the algebra
Hol
(
ℂ
)
Hol
ℂ
{\displaystyle{\displaystyle\mathrm{Hol}(\mathbb{C})}}
of holomorphic functions on
ℂ
ℂ
{\displaystyle{\displaystyle\mathbb{C}}}
.
Convolution algebra of rapidly vanishing functions on a finitely generated discrete group. Let
G
𝐺
{\displaystyle{\displaystyle G}}
be a finitely generated group , with the discrete topology . This means that there exists a set of finitely many elements
U
=
{
g
1
,
…
,
g
n
}
⊆
G
𝑈
subscript
𝑔
1
…
subscript
𝑔
𝑛
𝐺
{\displaystyle{\displaystyle U=\{g_{1},\dots,g_{n}\}\subseteq G}}
such that:
⋃
n
=
0
∞
U
n
=
G
.
superscript
subscript
𝑛
0
superscript
𝑈
𝑛
𝐺
{\displaystyle\bigcup_{n=0}^{\infty}U^{n}=G.}
Without loss of generality, we may also assume that the identity element
e
𝑒
{\displaystyle{\displaystyle e}}
of
G
𝐺
{\displaystyle{\displaystyle G}}
is contained in
U
𝑈
{\displaystyle{\displaystyle U}}
. Define a function
ℓ
:
G
→
[
0
,
∞
)
:
ℓ
→
𝐺
0
{\displaystyle{\displaystyle\ell:G\to[0,\infty)}}
by
ℓ
(
g
)
=
min
{
n
∣
g
∈
U
n
}
.
ℓ
𝑔
conditional
𝑛
𝑔
superscript
𝑈
𝑛
{\displaystyle\ell(g)=\min\{n\mid g\in U^{n}\}.}
Then
ℓ
(
g
h
)
≤
ℓ
(
g
)
+
ℓ
(
h
)
ℓ
𝑔
ℎ
ℓ
𝑔
ℓ
ℎ
{\displaystyle{\displaystyle\ell(gh)\leq\ell(g)+\ell(h)}}
, and
ℓ
(
e
)
=
0
ℓ
𝑒
0
{\displaystyle{\displaystyle\ell(e)=0}}
, since we define
U
0
=
{
e
}
superscript
𝑈
0
𝑒
{\displaystyle{\displaystyle U^{0}=\{e\}}}
.[د] Let
A
𝐴
{\displaystyle{\displaystyle A}}
be the
ℂ
ℂ
{\displaystyle{\displaystyle\mathbb{C}}}
-vector space
S
(
G
)
=
{
φ
:
G
→
ℂ
|
∥
φ
∥
d
<
∞
,
d
=
0
,
1
,
2
,
…
}
,
fragments
S
fragments
(
G
)
{
φ
:
G
→
C
|
parallel-to
φ
subscript
parallel-to
𝑑
,
d
0
,
1
,
2
,
…
}
,
{\displaystyle S(G)={\biggr{\{}}\varphi:G\to\mathbb{C}\,\,{\biggl{|}}\,\,\|%
\varphi\|_{d}<\infty,\quad d=0,1,2,\dots{\biggr{\}}},}
where the seminorms
∥
⋅
∥
d
fragments
parallel-to
⋅
subscript
parallel-to
𝑑
{\displaystyle{\displaystyle\|\cdot\|_{d}}}
are defined by
∥
φ
∥
d
=
∥
ℓ
d
φ
∥
1
=
∑
g
∈
G
ℓ
(
g
)
d
|
φ
(
g
)
|
.
subscript
norm
𝜑
𝑑
subscript
norm
superscript
ℓ
𝑑
𝜑
1
subscript
𝑔
𝐺
ℓ
superscript
𝑔
𝑑
𝜑
𝑔
{\displaystyle\|\varphi\|_{d}=\|\ell^{d}\varphi\|_{1}=\sum_{g\in G}\ell(g)^{d}%
|\varphi(g)|.}
[ذ]
A
𝐴
{\displaystyle{\displaystyle A}}
is an
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebra for the convolution multiplication
φ
*
ψ
(
g
)
=
∑
h
∈
G
φ
(
h
)
ψ
(
h
-
1
g
)
,
𝜑
𝜓
𝑔
subscript
ℎ
𝐺
𝜑
ℎ
𝜓
superscript
ℎ
1
𝑔
{\displaystyle\varphi*\psi(g)=\sum_{h\in G}\varphi(h)\psi(h^{-1}g),}
[ر]
A
𝐴
{\displaystyle{\displaystyle A}}
is unital because
G
𝐺
{\displaystyle{\displaystyle G}}
is discrete, and
A
𝐴
{\displaystyle{\displaystyle A}}
is commutative if and only if
G
𝐺
{\displaystyle{\displaystyle G}}
is Abelian .
Non
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebras. The Aren's algebra
A
=
L
ω
[
0
,
1
]
=
⋂
p
≥
1
L
p
[
0
,
1
]
𝐴
superscript
𝐿
𝜔
0
1
subscript
𝑝
1
superscript
𝐿
𝑝
0
1
{\displaystyle A=L^{\omega}[0,1]=\bigcap_{p\geq 1}L^{p}[0,1]}
is an example of a commutative non-
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebra with discontinuous inversion. The topology is given by
L
p
superscript
𝐿
𝑝
{\displaystyle{\displaystyle L^{p}}}
norms
∥
f
∥
p
=
(
∫
0
1
|
f
(
t
)
|
p
𝑑
t
)
1
/
p
,
f
∈
A
,
formulae-sequence
subscript
norm
𝑓
𝑝
superscript
superscript
subscript
0
1
superscript
𝑓
𝑡
𝑝
differential-d
𝑡
1
𝑝
𝑓
𝐴
{\displaystyle\|f\|_{p}=\left(\int_{0}^{1}|f(t)|^{p}dt\right)^{1/p},\qquad f%
\in A,}
and multiplication is given by convolution of functions with respect to Lebesgue measure on
[
0
,
1
]
0
1
{\displaystyle{\displaystyle[0,1]}}
.
Generalizations
We can drop the requirement for the algebra to be locally convex, but still a complete metric space. In this case, the underlying space may be called a Fréchet space or an F-space .
If the requirement that the number of seminorms be countable is dropped, the algebra becomes locally convex (LC) or locally multiplicatively convex (LMC). A complete LMC algebra is called an Arens-Michael algebra.
Michael's Conjecture
The question of whether all linear multiplicative functionals on an
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Frechet algebra are continuous is known as Michael's Conjecture.[16] This conjecture is perhaps the most famous open problem in the theory of topological algebras.
ملاحظات
^ An increasing family means that for each
a
∈
A
,
𝑎
𝐴
{\displaystyle{\displaystyle a\in A,}}
∥
a
∥
0
≤
∥
a
∥
1
≤
⋯
≤
∥
a
∥
n
≤
⋯
subscript
norm
𝑎
0
subscript
norm
𝑎
1
⋯
subscript
norm
𝑎
𝑛
⋯
{\displaystyle{\displaystyle\|a\|_{0}\leq\|a\|_{1}\leq\cdots\leq\|a\|_{n}\leq%
\cdots}}
.
^ Joint continuity of multiplication means that for every absolutely convex neighborhood
V
𝑉
{\displaystyle{\displaystyle V}}
of zero, there is an absolutely convex neighborhood
U
𝑈
{\displaystyle{\displaystyle U}}
of zero for which
U
2
⊆
V
,
superscript
𝑈
2
𝑉
{\displaystyle{\displaystyle U^{2}\subseteq V,}}
from which the seminorm inequality follows. Conversely,
∥
a
k
b
k
-
a
b
∥
n
=
∥
a
k
b
k
-
a
b
k
+
a
b
k
-
a
b
∥
n
≤
∥
a
k
b
k
-
a
b
k
∥
n
+
∥
a
b
k
-
a
b
∥
n
≤
C
n
(
∥
a
k
-
a
∥
m
∥
b
k
∥
m
+
∥
a
∥
m
∥
b
k
-
b
∥
m
)
≤
C
n
(
∥
a
k
-
a
∥
m
∥
b
∥
m
+
∥
a
k
-
a
∥
m
∥
b
k
-
b
∥
m
+
∥
a
∥
m
∥
b
k
-
b
∥
m
)
.
missing-subexpression
subscript
norm
subscript
𝑎
𝑘
subscript
𝑏
𝑘
𝑎
𝑏
𝑛
missing-subexpression
absent
subscript
norm
subscript
𝑎
𝑘
subscript
𝑏
𝑘
𝑎
subscript
𝑏
𝑘
𝑎
subscript
𝑏
𝑘
𝑎
𝑏
𝑛
missing-subexpression
absent
subscript
norm
subscript
𝑎
𝑘
subscript
𝑏
𝑘
𝑎
subscript
𝑏
𝑘
𝑛
subscript
norm
𝑎
subscript
𝑏
𝑘
𝑎
𝑏
𝑛
missing-subexpression
absent
subscript
𝐶
𝑛
subscript
norm
subscript
𝑎
𝑘
𝑎
𝑚
subscript
norm
subscript
𝑏
𝑘
𝑚
subscript
norm
𝑎
𝑚
subscript
norm
subscript
𝑏
𝑘
𝑏
𝑚
missing-subexpression
absent
subscript
𝐶
𝑛
subscript
norm
subscript
𝑎
𝑘
𝑎
𝑚
subscript
norm
𝑏
𝑚
subscript
norm
subscript
𝑎
𝑘
𝑎
𝑚
subscript
norm
subscript
𝑏
𝑘
𝑏
𝑚
subscript
norm
𝑎
𝑚
subscript
norm
subscript
𝑏
𝑘
𝑏
𝑚
{\displaystyle{\displaystyle{\begin{aligned} &\displaystyle{}\|a_{k}b_{k}-ab\|%
_{n}\\
&\displaystyle=\|a_{k}b_{k}-ab_{k}+ab_{k}-ab\|_{n}\\
&\displaystyle\leq\|a_{k}b_{k}-ab_{k}\|_{n}+\|ab_{k}-ab\|_{n}\\
&\displaystyle\leq C_{n}{\biggl{(}}\|a_{k}-a\|_{m}\|b_{k}\|_{m}+\|a\|_{m}\|b_{%
k}-b\|_{m}{\biggr{)}}\\
&\displaystyle\leq C_{n}{\biggl{(}}\|a_{k}-a\|_{m}\|b\|_{m}+\|a_{k}-a\|_{m}\|b%
_{k}-b\|_{m}+\|a\|_{m}\|b_{k}-b\|_{m}{\biggr{)}}.\end{aligned}}}}
^ In other words, an
m
𝑚
{\displaystyle{\displaystyle m}}
-convex Fréchet algebra is a topological algebra , in which the topology is given by a countable family of submultiplicative seminorms:
p
(
f
g
)
≤
p
(
f
)
p
(
g
)
,
𝑝
𝑓
𝑔
𝑝
𝑓
𝑝
𝑔
{\displaystyle{\displaystyle p(fg)\leq p(f)p(g),}}
and the algebra is complete.
^ If
A
𝐴
{\displaystyle{\displaystyle A}}
is an algebra over a field
k
𝑘
{\displaystyle{\displaystyle k}}
, the unitization
A
+
superscript
𝐴
{\displaystyle{\displaystyle A^{+}}}
of
A
𝐴
{\displaystyle{\displaystyle A}}
is the direct sum
A
⊕
k
1
direct-sum
𝐴
𝑘
1
{\displaystyle{\displaystyle A\oplus k1}}
, with multiplication defined as
(
a
+
μ
1
)
(
b
+
λ
1
)
=
a
b
+
μ
b
+
λ
a
+
μ
λ
1
.
𝑎
𝜇
1
𝑏
𝜆
1
𝑎
𝑏
𝜇
𝑏
𝜆
𝑎
𝜇
𝜆
1
{\displaystyle{\displaystyle(a+\mu 1)(b+\lambda 1)=ab+\mu b+\lambda a+\mu%
\lambda 1.}}
^ If
a
∈
A
𝑎
𝐴
{\displaystyle{\displaystyle a\in A}}
, then
b
∈
A
𝑏
𝐴
{\displaystyle{\displaystyle b\in A}}
is a quasi-inverse for
a
𝑎
{\displaystyle{\displaystyle a}}
if
a
+
b
-
a
b
=
0
𝑎
𝑏
𝑎
𝑏
0
{\displaystyle{\displaystyle a+b-ab=0}}
.
^ If
A
𝐴
{\displaystyle{\displaystyle A}}
is non-unital, replace invertible with quasi-invertible.
^ To see the completeness, let
φ
k
subscript
𝜑
𝑘
{\displaystyle{\displaystyle\varphi_{k}}}
be a Cauchy sequence. Then each derivative
φ
k
(
l
)
superscript
subscript
𝜑
𝑘
𝑙
{\displaystyle{\displaystyle\varphi_{k}^{(l)}}}
is a Cauchy sequence in the sup norm on
S
1
superscript
𝑆
1
{\displaystyle{\displaystyle S^{1}}}
, and hence converges uniformly to a continuous function
ψ
l
subscript
𝜓
𝑙
{\displaystyle{\displaystyle\psi_{l}}}
on
S
1
superscript
𝑆
1
{\displaystyle{\displaystyle S^{1}}}
. It suffices to check that
ψ
l
subscript
𝜓
𝑙
{\displaystyle{\displaystyle\psi_{l}}}
is the
l
𝑙
{\displaystyle{\displaystyle l}}
th derivative of
ψ
0
subscript
𝜓
0
{\displaystyle{\displaystyle\psi_{0}}}
. But, using the fundamental theorem of calculus , and taking the limit inside the integral (using uniform convergence ), we have
ψ
l
(
x
)
-
ψ
l
(
x
0
)
=
lim
k
→
∞
(
φ
k
(
l
)
(
x
)
-
φ
k
(
l
)
(
x
0
)
)
=
lim
k
→
∞
∫
x
0
x
φ
k
(
l
+
1
)
(
t
)
𝑑
t
=
∫
x
0
x
ψ
l
+
1
(
t
)
𝑑
t
.
missing-subexpression
subscript
𝜓
𝑙
𝑥
subscript
𝜓
𝑙
subscript
𝑥
0
subscript
→
𝑘
superscript
subscript
𝜑
𝑘
𝑙
𝑥
superscript
subscript
𝜑
𝑘
𝑙
subscript
𝑥
0
subscript
→
𝑘
superscript
subscript
subscript
𝑥
0
𝑥
superscript
subscript
𝜑
𝑘
𝑙
1
𝑡
differential-d
𝑡
superscript
subscript
subscript
𝑥
0
𝑥
subscript
𝜓
𝑙
1
𝑡
differential-d
𝑡
{\displaystyle{\displaystyle{\begin{aligned} &\displaystyle{}\psi_{l}(x)-\psi_%
{l}(x_{0})\\
\displaystyle=&\displaystyle{}\lim_{k\to\infty}\left(\varphi_{k}^{(l)}(x)-%
\varphi_{k}^{(l)}(x_{0})\right)\\
\displaystyle=&\displaystyle{}\lim_{k\to\infty}\int_{x_{0}}^{x}\varphi_{k}^{(l%
+1)}(t)dt\\
\displaystyle=&\displaystyle{}\int_{x_{0}}^{x}\psi_{l+1}(t)dt.\end{aligned}}}}
^
We can replace the generating set
U
𝑈
{\displaystyle{\displaystyle U}}
with
U
∪
U
-
1
𝑈
superscript
𝑈
1
{\displaystyle{\displaystyle U\cup U^{-1}}}
, so that
U
=
U
-
1
𝑈
superscript
𝑈
1
{\displaystyle{\displaystyle U=U^{-1}}}
. Then
ℓ
ℓ
{\displaystyle{\displaystyle\ell}}
satisfies the additional property
ℓ
(
g
-
1
)
=
ℓ
(
g
)
ℓ
superscript
𝑔
1
ℓ
𝑔
{\displaystyle{\displaystyle\ell(g^{-1})=\ell(g)}}
, and is a length function on
G
𝐺
{\displaystyle{\displaystyle G}}
.
^
To see that
A
𝐴
{\displaystyle{\displaystyle A}}
is Fréchet space, let
φ
n
subscript
𝜑
𝑛
{\displaystyle{\displaystyle\varphi_{n}}}
be a Cauchy sequence. Then for each
g
∈
G
𝑔
𝐺
{\displaystyle{\displaystyle g\in G}}
,
φ
n
(
g
)
subscript
𝜑
𝑛
𝑔
{\displaystyle{\displaystyle\varphi_{n}(g)}}
is a Cauchy sequence in
ℂ
ℂ
{\displaystyle{\displaystyle\mathbb{C}}}
. Define
φ
(
g
)
𝜑
𝑔
{\displaystyle{\displaystyle\varphi(g)}}
to be the limit. Then
∑
g
∈
S
ℓ
(
g
)
d
|
φ
n
(
g
)
-
φ
(
g
)
|
≤
∑
g
∈
S
ℓ
(
g
)
d
|
φ
n
(
g
)
-
φ
m
(
g
)
|
+
∑
g
∈
S
ℓ
(
g
)
d
|
φ
m
(
g
)
-
φ
(
g
)
|
≤
∥
φ
n
-
φ
m
∥
d
+
∑
g
∈
S
ℓ
(
g
)
d
|
φ
m
(
g
)
-
φ
(
g
)
|
,
missing-subexpression
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑛
𝑔
𝜑
𝑔
missing-subexpression
absent
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑛
𝑔
subscript
𝜑
𝑚
𝑔
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑚
𝑔
𝜑
𝑔
missing-subexpression
absent
subscript
norm
subscript
𝜑
𝑛
subscript
𝜑
𝑚
𝑑
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑚
𝑔
𝜑
𝑔
{\displaystyle{\displaystyle{\begin{aligned} &\displaystyle\sum_{g\in S}\ell(g%
)^{d}|\varphi_{n}(g)-\varphi(g)|\\
&\displaystyle\leq\sum_{g\in S}\ell(g)^{d}|\varphi_{n}(g)-\varphi_{m}(g)|+\sum%
_{g\in S}\ell(g)^{d}|\varphi_{m}(g)-\varphi(g)|\\
&\displaystyle\leq\|\varphi_{n}-\varphi_{m}\|_{d}+\sum_{g\in S}\ell(g)^{d}|%
\varphi_{m}(g)-\varphi(g)|,\end{aligned}}}}
where the sum ranges over any finite subset
S
𝑆
{\displaystyle{\displaystyle S}}
of
G
𝐺
{\displaystyle{\displaystyle G}}
. Let
ϵ
>
0
italic-ϵ
0
{\displaystyle{\displaystyle\epsilon>0}}
, and let
K
ϵ
>
0
subscript
𝐾
italic-ϵ
0
{\displaystyle{\displaystyle K_{\epsilon}>0}}
be such that
∥
φ
n
-
φ
m
∥
d
<
ϵ
subscript
norm
subscript
𝜑
𝑛
subscript
𝜑
𝑚
𝑑
italic-ϵ
{\displaystyle{\displaystyle\|\varphi_{n}-\varphi_{m}\|_{d}<\epsilon}}
for
m
,
n
≥
K
ϵ
𝑚
𝑛
subscript
𝐾
italic-ϵ
{\displaystyle{\displaystyle m,n\geq K_{\epsilon}}}
. By letting
m
𝑚
{\displaystyle{\displaystyle m}}
run, we have
∑
g
∈
S
ℓ
(
g
)
d
|
φ
n
(
g
)
-
φ
(
g
)
|
<
ϵ
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑛
𝑔
𝜑
𝑔
italic-ϵ
{\displaystyle{\displaystyle\sum_{g\in S}\ell(g)^{d}|\varphi_{n}(g)-\varphi(g)%
|<\epsilon}}
for
n
≥
K
ϵ
𝑛
subscript
𝐾
italic-ϵ
{\displaystyle{\displaystyle n\geq K_{\epsilon}}}
. Summing over all of
G
𝐺
{\displaystyle{\displaystyle G}}
, we therefore have
∥
φ
n
-
φ
∥
d
<
ϵ
subscript
norm
subscript
𝜑
𝑛
𝜑
𝑑
italic-ϵ
{\displaystyle{\displaystyle\left\|\varphi_{n}-\varphi\right\|_{d}<\epsilon}}
for
n
≥
K
ϵ
𝑛
subscript
𝐾
italic-ϵ
{\displaystyle{\displaystyle n\geq K_{\epsilon}}}
. By the estimate
∑
g
∈
S
ℓ
(
g
)
d
|
φ
(
g
)
|
≤
∑
g
∈
S
ℓ
(
g
)
d
|
φ
n
(
g
)
-
φ
(
g
)
|
+
∑
g
∈
S
ℓ
(
g
)
d
|
φ
n
(
g
)
|
≤
∥
φ
n
-
φ
∥
d
+
∥
φ
n
∥
d
,
missing-subexpression
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
𝜑
𝑔
missing-subexpression
absent
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑛
𝑔
𝜑
𝑔
subscript
𝑔
𝑆
ℓ
superscript
𝑔
𝑑
subscript
𝜑
𝑛
𝑔
missing-subexpression
absent
subscript
norm
subscript
𝜑
𝑛
𝜑
𝑑
subscript
norm
subscript
𝜑
𝑛
𝑑
{\displaystyle{\displaystyle{\begin{aligned} &\displaystyle{}\sum_{g\in S}\ell%
(g)^{d}|\varphi(g)|\\
&\displaystyle{}\leq\sum_{g\in S}\ell(g)^{d}|\varphi_{n}(g)-\varphi(g)|+\sum_{%
g\in S}\ell(g)^{d}|\varphi_{n}(g)|\\
&\displaystyle{}\leq\|\varphi_{n}-\varphi\|_{d}+\|\varphi_{n}\|_{d},\end{%
aligned}}}}
we obtain
∥
φ
∥
d
<
∞
subscript
norm
𝜑
𝑑
{\displaystyle{\displaystyle\|\varphi\|_{d}<\infty}}
. Since this holds for each
d
∈
ℕ
𝑑
ℕ
{\displaystyle{\displaystyle d\in\mathbb{N}}}
, we have
φ
∈
A
𝜑
𝐴
{\displaystyle{\displaystyle\varphi\in A}}
and
φ
n
→
φ
→
subscript
𝜑
𝑛
𝜑
{\displaystyle{\displaystyle\varphi_{n}\to\varphi}}
in the Fréchet topology, so
A
𝐴
{\displaystyle{\displaystyle A}}
is complete.
^
∥
φ
*
ψ
∥
d
≤
∑
g
∈
G
(
∑
h
∈
G
ℓ
(
g
)
d
|
φ
(
h
)
|
|
ψ
(
h
-
1
g
)
|
)
≤
∑
g
,
h
∈
G
(
ℓ
(
h
)
+
ℓ
(
h
-
1
g
)
)
d
|
φ
(
h
)
|
|
ψ
(
h
-
1
g
)
|
=
∑
i
=
0
d
(
d
i
)
(
∑
g
,
h
∈
G
|
ℓ
i
φ
(
h
)
|
|
ℓ
d
-
i
ψ
(
h
-
1
g
)
|
)
=
∑
i
=
0
d
(
d
i
)
(
∑
h
∈
G
|
ℓ
i
φ
(
h
)
|
)
(
∑
g
∈
G
|
ℓ
d
-
i
ψ
(
g
)
|
)
=
∑
i
=
0
d
(
d
i
)
∥
φ
∥
i
∥
ψ
∥
d
-
i
≤
2
d
∥
φ
∥
d
′
∥
ψ
∥
d
′
missing-subexpression
subscript
norm
𝜑
𝜓
𝑑
missing-subexpression
absent
subscript
𝑔
𝐺
subscript
ℎ
𝐺
ℓ
superscript
𝑔
𝑑
𝜑
ℎ
𝜓
superscript
ℎ
1
𝑔
missing-subexpression
absent
subscript
𝑔
ℎ
𝐺
superscript
ℓ
ℎ
ℓ
superscript
ℎ
1
𝑔
𝑑
𝜑
ℎ
𝜓
superscript
ℎ
1
𝑔
missing-subexpression
absent
superscript
subscript
𝑖
0
𝑑
binomial
𝑑
𝑖
subscript
𝑔
ℎ
𝐺
superscript
ℓ
𝑖
𝜑
ℎ
superscript
ℓ
𝑑
𝑖
𝜓
superscript
ℎ
1
𝑔
missing-subexpression
absent
superscript
subscript
𝑖
0
𝑑
binomial
𝑑
𝑖
subscript
ℎ
𝐺
superscript
ℓ
𝑖
𝜑
ℎ
subscript
𝑔
𝐺
superscript
ℓ
𝑑
𝑖
𝜓
𝑔
missing-subexpression
absent
superscript
subscript
𝑖
0
𝑑
binomial
𝑑
𝑖
subscript
norm
𝜑
𝑖
subscript
norm
𝜓
𝑑
𝑖
missing-subexpression
absent
superscript
2
𝑑
subscript
superscript
norm
𝜑
′
𝑑
subscript
superscript
norm
𝜓
′
𝑑
{\displaystyle{\displaystyle{\begin{aligned} &\displaystyle\|\varphi*\psi\|_{d%
}\\
&\displaystyle\leq\sum_{g\in G}\left(\sum_{h\in G}\ell(g)^{d}|\varphi(h)|\left%
|\psi(h^{-1}g)\right|\right)\\
&\displaystyle\leq\sum_{g,h\in G}\left(\ell(h)+\ell\left(h^{-1}g\right)\right)%
^{d}|\varphi(h)|\left|\psi(h^{-1}g)\right|\\
&\displaystyle=\sum_{i=0}^{d}{d\choose i}\left(\sum_{g,h\in G}\left|\ell^{i}%
\varphi(h)\right|\left|\ell^{d-i}\psi(h^{-1}g)\right|\right)\\
&\displaystyle=\sum_{i=0}^{d}{d\choose i}\left(\sum_{h\in G}\left|\ell^{i}%
\varphi(h)\right|\right)\left(\sum_{g\in G}\left|\ell^{d-i}\psi(g)\right|%
\right)\\
&\displaystyle=\sum_{i=0}^{d}{d\choose i}\|\varphi\|_{i}\|\psi\|_{d-i}\\
&\displaystyle\leq 2^{d}\|\varphi\|^{\prime}_{d}\|\psi\|^{\prime}_{d}\end{%
aligned}}}}
الهامش
المصادر
Fragoulopoulou, Maria (2005). "Bibliography". Topological Algebras with Involution . North-Holland Mathematics Studies. Vol. 200. Amsterdam: Elsevier B.V. pp. 451–485. doi :10.1016/S0304-0208(05)80031-3 . ISBN 978-044452025-8 .
Husain, Taqdir (1991). Orthogonal Schauder Bases . Pure and Applied Mathematics. Vol. 143. New York City: Marcel Dekker. ISBN 0-8247-8508-8 .
Michael, Ernest A. (1952). Locally Multiplicatively-Convex Topological Algebras . Memoirs of the American Mathematical Society. Vol. 11. MR 0051444 .
Mitiagin, B.; Rolewicz, S.; Żelazko, W. (1962). "Entire functions in B 0 -algebras" . Studia Mathematica . 21 (3): 291–306. doi :10.4064/sm-21-3-291-306 . MR 0144222 .
Palmer, T.W. (1994). Banach Algebras and the General Theory of *-algebras, Volume I: Algebras and Banach Algebras . Encyclopedia of Mathematics and its Applications. Vol. 49. New York City: Cambridge University Press. ISBN 978-052136637-3 .
Rudin, Walter (1973). Functional Analysis . Series in Higher Mathematics. New York City: McGraw-Hill Book. 1.8(e). ISBN 978-007054236-5 – via Internet Archive .
Waelbroeck, Lucien (1971). Topological Vector Spaces and Algebras . Lecture Notes in Mathematics. Vol. 230. doi :10.1007/BFb0061234 . ISBN 978-354005650-8 . MR 0467234 .
Żelazko, W. (1965). "Metric generalizations of Banach algebras". Rozprawy Mat. (Dissertationes Math.) . 47 . Theorem 13.17. MR 0193532 .
Żelazko, W. (1994). "Concerning entire functions in B 0 -algebras" . Studia Mathematica . 110 (3): 283–290. doi :10.4064/sm-110-3-283-290 . MR 1292849 .
Żelazko, W. (2001) [1994]. "Fréchet algebra". Encyclopedia of Mathematics . EMS Press.