تحول برزينسكي-كوسترلتس-ثولس
تحول برزينسكي-كوسترليتز-ثولس (Berezinskii–Kosterlitz–Thouless، اختصاراً BKT)، هو تحول طوري في النموذج إكس واي ثنائي الأبعاد في الفيزيائي الإحصائية. وهو انتقال من أزواج الدوامات المضادة للدوامات المقيدة عند درجات حرارة منخفضة إلى دوامات غير مقترنة ودوامات مضادة عند درجة حرارة حرجة معينة. سُمي التحول على اسم فيزيائيي المواد المكثفة ڤاديم برزينسكي وجون كوسترليتز وديڤد ثولس.[1]
يمكن العثور على تحولات برزينسكي-كوسترليتز-ثولس في العديد من الأنظمة ثنائية الأبعاد في فيزياء المواد المكثفة التي يتم تقريبها بواسطة نموذج إكس واي، بما في ذلك صفائف تقاطع جوزيفسون وأغشية الموصلية الفائقة الحبيبية الرقيقة غير المنتظمة.[2] في الآونة الأخيرة، يُطبق المصطلح من قبل مجتمع انتقال العازل ثنائي الأبعاد ذي الموصلية الفائقة على تثبيت أزواج كوپر في نظام العزل، بسبب أوجه التشابه مع تحول برزينسكي-كوسترليتز-ثولس الأصلي.
تقرأ الكثافة الحرجة لتحول برزينسكي-كوسترليتز-ثولس في النظام المتفاعل بشكل ضعيف[3]
حيث وجد أن الثابت بلا أبعاد هو .[4]
أدى العمل على التحول إلى منح جائزة نوبل في الفيزياء 2016 لكل من ثولس وكوسترليتز؛ بينما توفي برزينسكي عام 1981.
XY model
The XY model is a two-dimensional vector spin model that possesses U(1) or circular symmetry. This system is not expected to possess a normal second-order phase transition. This is because the expected ordered phase of the system is destroyed by transverse fluctuations, i.e. the Nambu-Goldstone modes associated with this broken continuous symmetry, which logarithmically diverge with system size. This is a specific case of what is called the Mermin–Wagner theorem in spin systems.
Rigorously the transition is not completely understood, but the existence of two phases was proved by McBryan & Spencer (1977) and Fröhlich & Spencer (1981).
Disordered phases with different correlations
In the XY model in two dimensions, a second-order phase transition is not seen. However, one finds a low-temperature quasi-ordered phase with a correlation function (see statistical mechanics) that decreases with the distance like a power, which depends on the temperature. The transition from the high-temperature disordered phase with the exponential correlation to this low-temperature quasi-ordered phase is a Kosterlitz–Thouless transition. It is a phase transition of infinite order.
Role of vortices
In the 2-D XY model, vortices are topologically stable configurations. It is found that the high-temperature disordered phase with exponential correlation decay is a result of the formation of vortices. Vortex generation becomes thermodynamically favorable at the critical temperature of the Kosterlitz–Thouless transition. At temperatures below this, vortex generation has a power law correlation.
Kosterlitz–Thouless transitions is described as a dissociation of bound vortex pairs with opposite circulations, called vortex–antivortex pairs, first described by Vadim Berezinskii. In these systems, thermal generation of vortices produces an even number of vortices of opposite sign. Bound vortex–antivortex pairs have lower energies than free vortices, but have lower entropy as well. In order to minimize free energy, , the system undergoes a transition at a critical temperature, . Below , there are only bound vortex–antivortex pairs. Above , there are free vortices.
Informal description
There is an elegant thermodynamic argument for the Kosterlitz–Thouless transition. The energy of a single vortex is , where is a parameter that depends upon the system in which the vortex is located, is the system size, and is the radius of the vortex core. One assumes . In the 2D system, the number of possible positions of a vortex is approximately . From Boltzmann's entropy formula, (with W is the number of states), the entropy is , where is the Boltzmann constant. Thus, the Helmholtz free energy is
When , the system will not have a vortex. On the other hand, when , entropic considerations favor the formation of a vortex. The critical temperature above which vortices may form can be found by setting and is given by
The Kosterlitz–Thouless transition can be observed experimentally in systems like 2D Josephson junction arrays by taking current and voltage (I-V) measurements. Above , the relation will be linear . Just below , the relation will be , as the number of free vortices will go as . This jump from linear dependence is indicative of a Kosterlitz–Thouless transition and may be used to determine . This approach was used in Resnick et al.[5] to confirm the Kosterlitz–Thouless transition in proximity-coupled Josephson junction arrays.
Field theoretic analysis
The following discussion uses field theoretic methods. Assume a field φ(x) defined in the plane which takes on values in , so that is identified with . That is, the circle is realized as .
The energy is given by
and the Boltzmann factor is .
Taking a contour integral over any contractible closed path , we would expect it to be zero (for example, by the fundamental theorem of calculus. However, this is not the case due to the singular nature of vortices (which give singularities in ).
To render the theory well-defined, it is only defined up to some energetic cut-off scale , so that we can puncture the plane at the points where the vortices are located, by removing regions with size of order . If winds counter-clockwise once around a puncture, the contour integral is an integer multiple of . The value of this integer is the index of the vector field .
Suppose that a given field configuration has punctures located at each with index . Then, decomposes into the sum of a field configuration with no punctures, and , where we have switched to the complex plane coordinates for convenience. The complex argument function has a branch cut, but, because is defined modulo , it has no physical consequences.
Now,
If , the second term is positive and diverges in the limit : configurations with unbalanced numbers of vortices of each orientation are never energetically favoured.
However, if the neutral condition holds, the second term is equal to , which is the total potential energy of a two-dimensional Coulomb gas. The scale L is an arbitrary scale that renders the argument of the logarithm dimensionless.
Assume the case with only vortices of multiplicity . At low temperatures and large the distance between a vortex and antivortex pair tends to be extremely small, essentially of the order . At large temperatures and small this distance increases, and the favoured configuration becomes effectively the one of a gas of free vortices and antivortices. The transition between the two different configurations is the Kosterlitz–Thouless phase transition, and the transition point is associated with an unbinding of vortex-antivortex pairs.
See also
Notes
- ^ Kosterlitz, J. M.; Thouless, D. J. (November 1972). "Ordering, metastability and phase transitions in two-dimensional systems". Journal of Physics C: Solid State Physics (in الإنجليزية). 6 (7): 1181–1203. Bibcode:1973JPhC....6.1181K. doi:10.1088/0022-3719/6/7/010. ISSN 0022-3719.
- ^ Tinkham, Michael (1906). Introduction to Superconductivity (2. ed.). Mineola, New York: Dover Publications, INC. pp. 237–239. ISBN 0486435032.
- ^ Functional Integrals in Quantum Field Theory and Statistical Physics.
- ^ Prokof'Ev, Nikolay; Ruebenacker, Oliver; Svistunov, Boris (2001). "Critical Point of a Weakly Interacting Two-Dimensional Bose Gas". Physical Review Letters. 87 (27): 270402. arXiv:cond-mat/0106075. Bibcode:2001PhRvL..87.0402P. doi:10.1103/PhysRevLett.87.270402. PMID 11800861.
- ^ Resnick et al. 1981.
References
- Березинский, В. Л. (1970), "Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии I. Классические системы" (in ru), ЖЭТФ 59 (3): 907–920. Translation available: Berezinskii, V. L. (1971), "Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems", Sov. Phys. JETP 32 (3): 493–500, Bibcode: 1971JETP...32..493B, http://www.jetp.ras.ru/cgi-bin/dn/e_032_03_0493.pdf
- Березинский, В. Л. (1971), "Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии II. Квантовые системы" (in ru), ЖЭТФ 61 (3): 1144–1156. Translation available: Berezinskii, V. L. (1972), "Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems", Sov. Phys. JETP 34 (3): 610–616, Bibcode: 1972JETP...34..610B, http://www.jetp.ras.ru/cgi-bin/dn/e_034_03_0610.pdf
- Kosterlitz, J. M.; Thouless, D. J. (1973), "Ordering, metastability and phase transitions in two-dimensional systems", Journal of Physics C: Solid State Physics 6 (7): 1181–1203, doi: , Bibcode: 1973JPhC....6.1181K
- McBryan, O.; Spencer, T. (1977), "On the decay of correlations in SO(n)-symmetric ferromagnets", Commun. Math. Phys. 53 (3): 299, doi: , Bibcode: 1977CMaPh..53..299M
- B. I. Halperin, D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
- A. P. Young, Phys. Rev. B 19, 1855 (1979)
- Resnick, D.J.; Garland, J.C.; Boyd, J.T.; Shoemaker, S.; Newrock, R.S. (1981), "Kosterlitz Thouless Transition in Proximity Coupled Superconducting Arrays", Phys. Rev. Lett. 47 (21): 1542, doi: , Bibcode: 1981PhRvL..47.1542R
- Fröhlich, Jürg; Spencer, Thomas (1981), "The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas", Comm. Math. Phys. 81 (4): 527–602, doi: , Bibcode: 1981CMaPh..81..527F, http://projecteuclid.org/euclid.cmp/1103920388
- Z. Hadzibabic (2006), "Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas", Nature 41 (7097): 1118–21, doi: , PMID 16810249, Bibcode: 2006Natur.441.1118H
- M. Mondal (2011), "Role of the vortex-core energy on the Beresinkii-Kosterlitz-Thouless transition in thin films of NbN", Phys. Rev. Lett. 107 (21): 217003, doi: , PMID 22181915, Bibcode: 2011PhRvL.107u7003M
Books
- J.V. Jose, 40 Years of Berezinskii–Kosterlitz–Thouless Theory, World Scientific, 2013, ISBN 978-981-4417-65-5
- H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, " SUPERFLOW AND VORTEX LINES", pp. 1–742, World Scientific (Singapore, 1989); Paperback ISBN 9971-5-0210-0 (also available online: Vol. I. Read pp. 618–688);
- H. Kleinert, Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation, World Scientific (Singapore, 2008) (also available online: here)
خطأ لوا في وحدة:Authority_control على السطر 278: attempt to call field '_showMessage' (a nil value).