مركز الزلزال
جزء من سلسلة مقالات عن الزلازل |
---|
الأنواع |
هزة سابقة • هزة تابعة • الدفع الأعمى مزدوج • بين الصفائح • داخل الصفيحة الدفع الهائل • مثارة عن بعد • بطيء تحت الماء • قص فائق تسونامي • Earthquake swarm |
الأسباب |
حركة الفوالق • نشاط بركاني • Induced seismicity |
الخصائص |
مركز الزلزال • بؤرة الزلزال • منطقة الظل موجة سيزمية • الموجة پي • الموجة إس |
القياس |
مقاييس زلزالية • السيزموگراف مقياس مدة الزلزال |
التنبؤ |
اللجنة المنسقة لتوقع الزلازل حساس بالزلازل |
أخرى |
فصم موجة القص • معادلة أدمز-وليامسون مناطق فلين-إنگدال • هندسة الزلزال Seismite • علم الزلازل |
جزء من سلسلة مقالات عن الزلازل |
---|
الأنواع |
هزة سابقة • هزة تابعة • الدفع الأعمى مزدوج • بين الصفائح • داخل الصفيحة الدفع الهائل • مثارة عن بعد • بطيء تحت الماء • قص فائق تسونامي • Earthquake swarm |
الأسباب |
حركة الفوالق • نشاط بركاني • Induced seismicity |
الخصائص |
مركز الزلزال • بؤرة الزلزال • منطقة الظل موجة سيزمية • الموجة پي • الموجة إس |
القياس |
مقاييس زلزالية • السيزموگراف مقياس مدة الزلزال |
التنبؤ |
اللجنة المنسقة لتوقع الزلازل حساس بالزلازل |
أخرى |
فصم موجة القص • معادلة أدمز-وليامسون مناطق فلين-إنگدال • هندسة الزلزال Seismite • علم الزلازل |
The epicenter, epicentre ( /ˈɛpisɛntər/) or epicentrum[1] in seismology is the point on the Earth's surface directly above a hypocenter or focus, the point where an earthquake or an underground explosion originates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surface damage
Before the instrumental period of earthquake observation, the epicenter was thought to be the location where the greatest damage occurred,[2] but the subsurface fault rupture may be long and spread surface damage across the entire rupture zone. As an example, in the magnitude 7.9 Denali earthquake of 2002 in Alaska, the epicenter was at the western end of the rupture, but the greatest damage was about 330 km (210 mi) away at the eastern end.[3] Focal depths of earthquakes occurring in continental crust mostly range from 2 to 20 kilometers (1.2 to 12.4 mi).[4] Continental earthquakes below 20 km (12 mi) are rare whereas in subduction zone earthquakes can originate at depths deeper than 600 km (370 mi).[4]
Epicentral distance
During an earthquake, seismic waves propagate in all directions from the hypocenter. Seismic shadowing occurs on the opposite side of the Earth from the earthquake epicenter because the planet's liquid outer core refracts the longitudinal or compressional (P-waves) while it absorbs the transverse or shear waves (S-waves). Outside the seismic shadow zone, both types of wave can be detected but, because of their different velocities and paths through the Earth, they arrive at different times. By measuring the time difference on any seismograph and the distance on a travel-time graph on which the P-wave and S-wave have the same separation, geologists can calculate the distance to the quake's epicenter. This distance is called the epicentral distance, commonly measured in ° (degrees) and denoted as Δ (delta) in seismology. The Láska's empirical rule provides an approximation of epicentral distance in the range of 2 000 − 10 000 km.
Once distances from the epicenter have been calculated from at least three seismographic measuring stations, the point can be located, using trilateration.
Epicentral distance is also used in calculating seismic magnitudes as developed by Richter and Gutenberg.[5][6]
Fault rupture
The point at which fault slipping begins is referred to as the focus of the earthquake.[4] The fault rupture begins at the focus and then expands along the fault surface. The rupture stops where the stresses become insufficient to continue breaking the fault (because the rocks are stronger) or where the rupture enters ductile material.[4] The magnitude of an earthquake is related to the total area of its fault rupture.[4] Most earthquakes are small, with rupture dimensions less than the depth of the focus so the rupture doesn't break the surface, but in high magnitude, destructive earthquakes, surface breaks are common.[4] Fault ruptures in large earthquakes can extend for more than 100 km (62 mi).[4] When a fault ruptures unilaterally (with the epicenter at or near the end of the fault break) the waves are stronger in one direction along the fault.[7]
Macroseismic epicenter
The macroseismic epicenter is the best estimate of the location of the epicenter derived without instrumental data. This may be estimated using intensity data, information about foreshocks and aftershocks, knowledge of local fault systems or extrapolations from data regarding similar earthquakes. For historical earthquakes that have not been instrumentally recorded, only a macroseismic epicenter can be given.[8]
Derivation and usage
The word is derived from the New Latin noun epicentrum,[9] the latinisation of the ancient Greek adjective ἐπίκεντρος (epikentros), "occupying a cardinal point, situated on a centre",[10] from ἐπί (epi) "on, upon, at"[11] and κέντρον (kentron) "centre".[12] The term was coined by the Irish seismologist Robert Mallet.[13]
It is also used to mean "center of activity", as in "Travel is restricted in the Chinese province thought to be the epicentre of the SARS outbreak."[14][15] Garner's Modern American Usage gives several examples of use in which "epicenter" is used to mean "center". Garner also refers to a William Safire article in which Safire quotes a geophysicist as attributing the use of the term to "spurious erudition on the part of writers combined with scientific illiteracy on the part of copy editors".[16] Garner has speculated that these misuses may just be "metaphorical descriptions of focal points of unstable and potentially destructive environments."[17]
References
- ^ Oxford English Dictionary: "The point over the centre: applied in Seismol. to the outbreaking point of earthquake shocks."
- ^ Yeats, R. S.; Sieh, K. E.; Allen, C. R. (1997). The Geology of Earthquakes. Oxford University Press. p. 64. ISBN 978-0-19-507827-5.
- ^ Fuis, Gary; Wald, Lisa. "Rupture in South-Central Alaska—The Denali Fault Earthquake of 2002". USGS. Retrieved 2008-04-20.
- ^ أ ب ت ث ج ح خ Jordan, Thomas H.; Grotzinger, John P. (2012). The essential Earth (2nd ed.). New York: W.H. Freeman. p. 429. ISBN 9781429255240. OCLC 798410008.
- ^ Tyler M. Schau (1991). "The Richter Scale (ML)". USGS. Retrieved 2008-09-14.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ William L. Ellsworth (1991). "Surface-Wave Magnitude (Ms) and Body-Wave Magnitude (mb)". USGS. Retrieved 2008-09-14.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ "What is Directivity?". earthquake.usgs.gov. Retrieved 2018-07-01.
- ^ Musson, R. M. W.; Cecić, I. (1 January 2002). "49 - Macroseismology". International Geophysics (in الإنجليزية). Academic Press. 81: 807–822. doi:10.1016/S0074-6142(02)80256-X. ISBN 9780124406520.
- ^ "epicenter". Merriam-Webster Online Dictionary. 2009. Retrieved 2009-10-19.
- ^ ἐπίκεντρος, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
- ^ ἐπί, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
- ^ epicentre, on Oxford Dictionaries
- ^ Filiatrault, A. (2002). Elements of Earthquake Engineering and Structural Dynamics (2nd ed.). Presses inter Polytechnique. p. 1. ISBN 978-2-553-01021-7.
- ^ Rick Thompson (2004). Writing for Broadcast Journalists. Routledge. p. 160. ISBN 978-1-134-36915-7.
- ^ Oltermann, P. (2009). How to Write. Random House. p. 246. ISBN 978-0-85265-138-4.
- ^ Safire, William (2001-05-06). "On Language". The New York Times Magazine (in الإنجليزية الأمريكية). p. 22. Archived from the original on 2022-10-17. Retrieved 2022-10-17.
- ^ Garner, BA (2009). Garner's Modern American Usage. Oxford University Press. p. 310. ISBN 9780199888771.